This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357597 #70 Feb 16 2025 08:34:04 %S A357597 3,8,2,9,3,8,7,5,2,6,4,9,1,4,7,5,1,2,5,9,3,5,7,1,8,5,1,9,6,4,7,3,1,6, %T A357597 4,8,4,8,0,9,9,1,6,8,2,4,7,2,3,2,5,5,2,9,3,1,3,0,9,5,8,0,8,4,6,9,2,5, %U A357597 6,2,7,7,5,3,2,2,3,4,6,3,1,8,3,4,5,3,7,0,0,6,2,8,4,7,3,8,1,4,0,3,5,0,4,7,0 %N A357597 Decimal expansion of real part of zeta'(0, 1-sqrt(2)). %H A357597 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HurwitzZetaFunction.html">Hurwitz Zeta Function</a>, formula 16 %F A357597 Equals arcsinh(1) + log(Pi/2)/2 + log(-csc(Pi*sqrt(2))/Gamma(sqrt(2)-1)). %F A357597 Equals Re(log(Gamma(1-sqrt(2))/sqrt(2*Pi))). %F A357597 Equals log(-sqrt(Pi)/(sqrt(2)!*sin(sqrt(2)*Pi))). - _Peter Luschny_, Feb 26 2023 %e A357597 0.38293875264914751259357185... %p A357597 Re(evalf(Zeta(1, 0, 1 - sqrt(2)), 120)); # _Vaclav Kotesovec_, Feb 26 2023 %t A357597 RealDigits[N[ArcSinh[1] + Log[Pi/2]/2 + Log[-Csc[Sqrt[2] Pi]/Gamma[Sqrt[2] - 1]], 105]][[1]] %o A357597 (PARI) real(zetahurwitz'(0, 1-sqrt(2))) \\ _Vaclav Kotesovec_, Feb 26 2023 %Y A357597 Cf. A324995, A324996. %K A357597 cons,nonn %O A357597 0,1 %A A357597 _Artur Jasinski_, Feb 25 2023