This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357600 #18 Oct 07 2022 09:15:31 %S A357600 163,427,907,1555,2683,3763,5923,5947,10627,13843,15667,17803,20563, %T A357600 30067,34483,31243,37123,48427,38707,58507,61483,85507,90787,111763, %U A357600 93307,103027,103387,126043,166147,134467,133387,164803,222643,189883,210907,217627,158923,289963,253507 %N A357600 Largest number k such that C(-k) is the cyclic group of order n, where C(D) is the class group of the quadratic field with discriminant D; or 0 if no such k exists. %C A357600 Different from the largest absolute value of negative fundamental discriminant d for class number n (which is equal to A038552(n) for n <= 100) at indices 8, 48, 52, 64, 68, 96, ... %C A357600 Conjecture: all terms are odd. %H A357600 Jianing Song, <a href="/A357600/b357600.txt">Table of n, a(n) for n = 1..100</a> %e A357600 Let h(D) denote the class number of the quadratic field with discriminant D. %e A357600 n | Largest number k such | k' = largest number k | C(-k') %e A357600 | that C(-k) = C_n | such that h(-k) = n | %e A357600 ----+-----------------------+-----------------------+---------- %e A357600 8 | 5947 | 6307 | C_2 X C_4 %e A357600 48 | 333547 | 335203 | C_2 X C_24 %e A357600 52 | 435163 | 439147 | C_2 X C_26 %e A357600 64 | 680947 | 693067 | C_2 X C_32 %e A357600 68 | 780187 | 819163 | C_2 X C_34 %e A357600 96 | 1681243 | 1684027 | C_2 X C_48 %Y A357600 Cf. A038552, A344073. %K A357600 nonn,hard %O A357600 1,1 %A A357600 _Jianing Song_, Oct 05 2022