cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357601 For n a power of 2, a(n) = n; otherwise, if 2^m is the greatest power of 2 not exceeding n and if k = n-2^m, then a(n) is the smallest number having d(a(k))+1 divisors which has not occurred earlier (d is the divisor counting function A000005).

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 25, 8, 7, 49, 121, 6, 169, 10, 14, 16, 11, 289, 361, 15, 529, 21, 22, 81, 841, 26, 27, 625, 33, 2401, 14641, 32, 13, 961, 1369, 34, 1681, 35, 38, 28561, 1849, 39, 46, 83521, 51, 130321, 279841, 12, 2209, 55, 57, 707281, 58, 923521, 1874161, 18
Offset: 1

Views

Author

David James Sycamore, Oct 05 2022

Keywords

Comments

Based on a similar recursion to that which produces the Doudna sequence, A005940. Conjectured to be permutation of the positive integers in which the primes appear in natural order.

Examples

			a(9)=7 because k=1, and a(1)=1, which has 1 divisor, so we are looking for the smallest number not yet seen which has 2 divisors. This must be 7 because 2,3,5 have occurred already.
		

Crossrefs

Programs

Formula

a(2^n + 1) = prime(n + 1); n >= 0
A000005(a(n)) = A063787(n). - Rémy Sigrist, Oct 06 2022