This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357606 #10 Oct 09 2022 04:22:49 %S A357606 36,48,80,120,162,168,200,224,264,270,280,300,312,352,378,392,408,416, %T A357606 450,456,500,552,588,594,630,696,700,702,744,750,882,888,918,968,980, %U A357606 984,1026,1032,1050,1088,1100,1128,1216,1232,1242,1272,1300,1372,1416,1452 %N A357606 Primitive terms of A357605: numbers in A357605 with no proper divisor in A357605. %C A357606 Numbers k such that A162296(k) > 2*k but for all the aliquot divisors d of k (i.e., d | k, d < k), A162296(d) <= 2*d. %C A357606 If k is a term then all the positive multiples of k are terms of A357605. %C A357606 The least odd term is a(144) = 4725. %H A357606 Amiram Eldar, <a href="/A357606/b357606.txt">Table of n, a(n) for n = 1..10000</a> %e A357606 36 is a term since A162296(36) = 79 > 2*36, but for all the divisors d of 36, 1, 2, 3, 4, 6, 9, 12 and 18, A162296(d) <= 2*d. E.g., A162296(18) = 28 < 2*18. %t A357606 q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1) > 2*n]; q[1] = False; primQ[n_] := q[n] && AllTrue[Most @ Divisors[n], ! q[#] &]; Select[Range[1500], primQ] %Y A357606 Cf. A162296. %Y A357606 Subsequence of A005101, A013929 and A357605. %Y A357606 Similar sequences: A091191, A302574. %K A357606 nonn %O A357606 1,1 %A A357606 _Amiram Eldar_, Oct 06 2022