cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357622 Half-alternating sum of the reversed n-th composition in standard order.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 3, 1, 4, 4, 4, 0, 4, 2, 2, 0, 5, 5, 5, -1, 5, 1, 1, -1, 5, 3, 3, -1, 3, 1, 1, 1, 6, 6, 6, -2, 6, 0, 0, -2, 6, 2, 2, -2, 2, 0, 0, 2, 6, 4, 4, -2, 4, 0, 0, 0, 4, 2, 2, 0, 2, 2, 2, 2, 7, 7, 7, -3, 7, -1, -1, -3, 7, 1, 1, -3, 1, -1, -1, 3, 7, 3
Offset: 0

Views

Author

Gus Wiseman, Oct 08 2022

Keywords

Comments

We define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ...
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 357-th composition is (2,1,3,2,1) so a(357) = 1 + 2 - 3 - 1 + 2 = 1.
		

Crossrefs

See link for sequences related to standard compositions.
This is the reverse version of A357621.
The skew-alternating form is A357624, non-reverse A357623.
Positions of zeros are A357626, reverse A357625.
The version for prime indices is A357629.
The version for Heinz numbers of partitions is A357633.
A124754 gives alternating sum of standard compositions, reverse A344618.
A357637 counts partitions by half-alternating sum, skew A357638.
A357641 counts comps w/ half-alt sum 0, partitions A357639, even A357642.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}];
    Table[halfats[Reverse[stc[n]]],{n,0,100}]