This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357623 #7 Oct 08 2022 09:39:55 %S A357623 0,1,2,0,3,1,-1,-1,4,2,0,0,-2,-2,-2,0,5,3,1,1,-1,-1,-1,1,-3,-3,-3,-1, %T A357623 -3,-1,1,1,6,4,2,2,0,0,0,2,-2,-2,-2,0,-2,0,2,2,-4,-4,-4,-2,-4,-2,0,0, %U A357623 -4,-2,0,0,2,2,2,0,7,5,3,3,1,1,1,3,-1,-1,-1,1,-1 %N A357623 Skew-alternating sum of the n-th composition in standard order. %C A357623 We define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + .... %C A357623 The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %H A357623 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a> %e A357623 The 358-th composition is (2,1,3,1,2) so a(358) = 2 - 1 - 3 + 1 + 2 = 1. %t A357623 stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A357623 skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}]; %t A357623 Table[skats[stc[n]],{n,0,100}] %Y A357623 See link for sequences related to standard compositions. %Y A357623 Positions of positive firsts appear to be A029744. %Y A357623 The half-alternating form is A357621, reverse A357622. %Y A357623 The reverse version is A357624. %Y A357623 Positions of zeros are A357627, reverse A357628. %Y A357623 The version for prime indices is A357630. %Y A357623 The version for Heinz numbers of partitions is A357634. %Y A357623 A124754 gives alternating sum of standard compositions, reverse A344618. %Y A357623 A357637 counts partitions by half-alternating sum, skew A357638. %Y A357623 A357641 counts comps w/ half-alt sum 0, partitions A357639, even A357642. %Y A357623 Cf. A001700, A001511, A053251, A344619, A357136, A357182, A357183, A357184, A357185, A357625, A357626. %K A357623 sign %O A357623 0,3 %A A357623 _Gus Wiseman_, Oct 08 2022