This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357626 #6 Oct 08 2022 14:16:01 %S A357626 0,11,15,37,38,45,46,53,54,55,59,137,138,140,153,154,156,167,169,170, %T A357626 171,172,179,191,201,202,204,205,206,213,214,229,230,231,235,243,247, %U A357626 251,255,529,530,532,536,561,562,564,568,583,587,593,594,595,596,600 %N A357626 Numbers k such that the reversed k-th composition in standard order has half-alternating sum 0. %C A357626 We define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ... %C A357626 The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %H A357626 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a> %e A357626 The sequence together with the corresponding compositions begins: %e A357626 0: () %e A357626 11: (2,1,1) %e A357626 15: (1,1,1,1) %e A357626 37: (3,2,1) %e A357626 38: (3,1,2) %e A357626 45: (2,1,2,1) %e A357626 46: (2,1,1,2) %e A357626 53: (1,2,2,1) %e A357626 54: (1,2,1,2) %e A357626 55: (1,2,1,1,1) %e A357626 59: (1,1,2,1,1) %t A357626 stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A357626 halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}]; %t A357626 Select[Range[0,100],halfats[Reverse[stc[#]]]==0&] %Y A357626 See link for sequences related to standard compositions. %Y A357626 The alternating form is A344619. %Y A357626 Positions of zeros in A357622. %Y A357626 The non-reverse version is A357625. %Y A357626 The skew-alternating form is A357628, reverse A357627. %Y A357626 The version for prime indices is A357631. %Y A357626 The version for Heinz numbers of partitions is A357635. %Y A357626 A124754 gives alternating sum of standard compositions, reverse A344618. %Y A357626 A357637 counts partitions by half-alternating sum, skew A357638. %Y A357626 A357641 counts comps w/ half-alt sum 0, partitions A357639, even A357642. %Y A357626 Cf. A001511, A053251, A357136, A357182, A357183, A357184, A357185, A357621, A357623, A357629, A357633. %K A357626 nonn %O A357626 1,2 %A A357626 _Gus Wiseman_, Oct 08 2022