This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357627 #5 Oct 08 2022 14:16:11 %S A357627 0,3,10,11,15,36,37,38,43,45,54,55,58,59,63,136,137,138,140,147,149, %T A357627 153,166,167,170,171,175,178,179,183,190,191,204,205,206,212,213,214, %U A357627 219,221,228,229,230,235,237,246,247,250,251,255,528,529,530,532,536 %N A357627 Numbers k such that the k-th composition in standard order has skew-alternating sum 0. %C A357627 We define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + .... %C A357627 The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %H A357627 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a> %e A357627 The sequence together with the corresponding compositions begins: %e A357627 0: () %e A357627 3: (1,1) %e A357627 10: (2,2) %e A357627 11: (2,1,1) %e A357627 15: (1,1,1,1) %e A357627 36: (3,3) %e A357627 37: (3,2,1) %e A357627 38: (3,1,2) %e A357627 43: (2,2,1,1) %e A357627 45: (2,1,2,1) %e A357627 54: (1,2,1,2) %e A357627 55: (1,2,1,1,1) %e A357627 58: (1,1,2,2) %e A357627 59: (1,1,2,1,1) %e A357627 63: (1,1,1,1,1,1) %t A357627 stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A357627 skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}]; %t A357627 Select[Range[0,100],skats[stc[#]]==0&] %Y A357627 See link for sequences related to standard compositions. %Y A357627 The alternating form is A344619. %Y A357627 Positions of zeros in A357623. %Y A357627 The half-alternating form is A357625, reverse A357626. %Y A357627 The reverse version is A357628. %Y A357627 The version for prime indices is A357632. %Y A357627 The version for Heinz numbers of partitions is A357636. %Y A357627 A124754 gives alternating sum of standard compositions, reverse A344618. %Y A357627 A357637 counts partitions by half-alternating sum, skew A357638. %Y A357627 A357641 counts comps w/ half-alt sum 0, partitions A357639, even A357642. %Y A357627 Cf. A001700, A001511, A053251, A357136, A357182-A357185, A357621, A357624, A357630, A357634, A357640. %K A357627 nonn %O A357627 1,2 %A A357627 _Gus Wiseman_, Oct 08 2022