This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357628 #5 Oct 08 2022 14:16:15 %S A357628 0,3,10,14,15,36,43,44,45,52,54,58,59,61,63,136,147,149,152,153,166, %T A357628 168,170,175,178,179,181,183,185,190,200,204,211,212,213,217,219,221, %U A357628 228,230,234,235,237,239,242,246,247,250,254,255,528,547,549,553,560 %N A357628 Numbers k such that the reversed k-th composition in standard order has skew-alternating sum 0. %C A357628 We define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + .... %C A357628 The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %H A357628 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a> %e A357628 The sequence together with the corresponding compositions begins: %e A357628 0: () %e A357628 3: (1,1) %e A357628 10: (2,2) %e A357628 14: (1,1,2) %e A357628 15: (1,1,1,1) %e A357628 36: (3,3) %e A357628 43: (2,2,1,1) %e A357628 44: (2,1,3) %e A357628 45: (2,1,2,1) %e A357628 52: (1,2,3) %e A357628 54: (1,2,1,2) %e A357628 58: (1,1,2,2) %e A357628 59: (1,1,2,1,1) %e A357628 61: (1,1,1,2,1) %e A357628 63: (1,1,1,1,1,1) %t A357628 stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A357628 skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}]; %t A357628 Select[Range[0,100],skats[Reverse[stc[#]]]==0&] %Y A357628 See link for sequences related to standard compositions. %Y A357628 The alternating form is A344619. %Y A357628 Positions of zeros are A357624, non-reverse A357623. %Y A357628 The half-alternating form is A357626, non-reverse A357625. %Y A357628 The non-reverse version is A357627. %Y A357628 The version for prime indices is A357632. %Y A357628 The version for Heinz numbers of partitions is A357636. %Y A357628 A124754 gives alternating sum of standard compositions, reverse A344618. %Y A357628 A357637 counts partitions by half-alternating sum, skew A357638. %Y A357628 A357641 counts comps w/ half-alt sum 0, partitions A357639, even A357642. %Y A357628 Cf. A001700, A001511, A053251, A357136, A357182, A357183, A357184, A357185, A357622, A357635, A357640. %K A357628 nonn %O A357628 1,2 %A A357628 _Gus Wiseman_, Oct 08 2022