This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357633 #5 Oct 09 2022 20:25:11 %S A357633 0,1,2,2,3,3,4,1,4,4,5,2,6,5,5,0,7,3,8,3,6,6,9,1,6,7,2,4,10,4,11,1,7, %T A357633 8,7,2,12,9,8,2,13,5,14,5,3,10,15,2,8,5,9,6,16,1,8,3,10,11,17,3,18,12, %U A357633 4,2,9,6,19,7,11,6,20,3,21,13,4,8,9,7,22,3,0 %N A357633 Half-alternating sum of the partition having Heinz number n. %C A357633 We define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ... %C A357633 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %e A357633 The partition with Heinz number 525 is (4,3,3,2) so a(525) = 4 + 3 - 3 - 2 = 2. %t A357633 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A357633 halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}]; %t A357633 Table[halfats[Reverse[primeMS[n]]],{n,30}] %Y A357633 The original alternating sum is A316524, reverse A344616. %Y A357633 The version for standard compositions is A357622, non-reverse A357621. %Y A357633 The skew-alternating form is A357634, non-reverse A357630. %Y A357633 Positions of zeros are A000583, non-reverse A357631. %Y A357633 The reverse version is A357629. %Y A357633 These partitions are counted by A357637, skew A357638. %Y A357633 A056239 adds up prime indices, row sums of A112798. %Y A357633 A351005 = alternately equal and unequal partitions, compositions A357643. %Y A357633 A351006 = alternately unequal and equal partitions, compositions A357644. %Y A357633 A357641 counts comps w/ half-alt sum 0, partitions A357639, even A357642. %Y A357633 Cf. A003963, A053251, A055932, A357189, A357485-A357488, A357623-A357626, A357632, A357636, A357640. %K A357633 nonn %O A357633 1,3 %A A357633 _Gus Wiseman_, Oct 09 2022