This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357635 #6 Oct 29 2022 09:10:03 %S A357635 2,8,24,32,54,128,135,162,375,384,512,648,864,875,1250,1715,1944,2048, %T A357635 2160,2592,3773,4374,4802,5000,6000,6144,8192,9317,10368,10935,13122, %U A357635 13824,14000,15000,17303,19208,20000,24167,27440,29282,30375,31104,32768,33750 %N A357635 Numbers k such that the half-alternating sum of the partition having Heinz number k is 1. %C A357635 We define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ... %C A357635 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %e A357635 The terms together with their prime indices begin: %e A357635 2: {1} %e A357635 8: {1,1,1} %e A357635 24: {1,1,1,2} %e A357635 32: {1,1,1,1,1} %e A357635 54: {1,2,2,2} %e A357635 128: {1,1,1,1,1,1,1} %e A357635 135: {2,2,2,3} %e A357635 162: {1,2,2,2,2} %e A357635 375: {2,3,3,3} %e A357635 384: {1,1,1,1,1,1,1,2} %e A357635 512: {1,1,1,1,1,1,1,1,1} %e A357635 648: {1,1,1,2,2,2,2} %e A357635 864: {1,1,1,1,1,2,2,2} %e A357635 875: {3,3,3,4} %t A357635 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A357635 halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}]; %t A357635 Select[Range[1000],halfats[Reverse[primeMS[#]]]==1&] %Y A357635 The version for k = 0 is A000583, standard compositions A357625-A357626. %Y A357635 The version for original alternating sum is A345958. %Y A357635 Positions of ones in A357633, non-reverse A357629. %Y A357635 The skew version for k = 0 is A357636, non-reverse A357632. %Y A357635 These partitions are counted by A035444, skew A035544. %Y A357635 The non-reverse version is A357851, k = 0 version A357631. %Y A357635 A056239 adds up prime indices, row sums of A112798. %Y A357635 A316524 gives alternating sum of prime indices, reverse A344616. %Y A357635 A351005 = alternately equal and unequal partitions, compositions A357643. %Y A357635 A351006 = alternately unequal and equal partitions, compositions A357644. %Y A357635 A357641 counts comps w/ half-alt sum 0, even-length A357642. %Y A357635 Cf. A000290, A003963, A053251, A055932, A357621-A357624, A357630, A357634, A357637, A357639, A357640. %K A357635 nonn %O A357635 1,1 %A A357635 _Gus Wiseman_, Oct 28 2022