cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357637 Triangle read by rows where T(n,k) is the number of integer partitions of n with half-alternating sum k, where k ranges from -n to n in steps of 2.

This page as a plain text file.
%I A357637 #16 Oct 12 2022 14:19:53
%S A357637 1,0,1,0,0,2,0,0,1,2,0,0,1,1,3,0,0,0,2,2,3,0,0,0,0,5,2,4,0,0,0,0,2,6,
%T A357637 3,4,0,0,0,0,2,3,9,3,5,0,0,0,0,0,4,7,10,4,5,0,0,0,0,0,0,11,8,13,4,6,0,
%U A357637 0,0,0,0,0,4,15,12,14,5,6,0,0,0,0,0,0,3,7,25,13,17,5,7
%N A357637 Triangle read by rows where T(n,k) is the number of integer partitions of n with half-alternating sum k, where k ranges from -n to n in steps of 2.
%C A357637 We define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ...
%H A357637 Alois P. Heinz, <a href="/A357637/b357637.txt">Rows n = 0..200, flattened</a>
%F A357637 Conjecture: The column sums are A029862.
%e A357637 Triangle begins:
%e A357637   1
%e A357637   0  1
%e A357637   0  0  2
%e A357637   0  0  1  2
%e A357637   0  0  1  1  3
%e A357637   0  0  0  2  2  3
%e A357637   0  0  0  0  5  2  4
%e A357637   0  0  0  0  2  6  3  4
%e A357637   0  0  0  0  2  3  9  3  5
%e A357637   0  0  0  0  0  4  7 10  4  5
%e A357637   0  0  0  0  0  0 11  8 13  4  6
%e A357637   0  0  0  0  0  0  4 15 12 14  5  6
%e A357637   0  0  0  0  0  0  3  7 25 13 17  5  7
%e A357637 Row n = 9 counts the following partitions:
%e A357637   (3222)       (333)      (432)     (441)  (9)
%e A357637   (22221)      (3321)     (522)     (531)  (54)
%e A357637   (21111111)   (4221)     (4311)    (621)  (63)
%e A357637   (111111111)  (32211)    (5211)    (711)  (72)
%e A357637                (222111)   (6111)           (81)
%e A357637                (2211111)  (33111)
%e A357637                (3111111)  (42111)
%e A357637                           (51111)
%e A357637                           (321111)
%e A357637                           (411111)
%p A357637 b:= proc(n, i, s, t) option remember; `if`(n=0, x^s, `if`(i<1, 0,
%p A357637       b(n, i-1, s, t)+b(n-i, min(n-i, i), s+`if`(t<2, i, -i), irem(t+1, 4))))
%p A357637     end:
%p A357637 T:= n-> (p-> seq(coeff(p, x, i), i=-n..n, 2))(b(n$2, 0$2)):
%p A357637 seq(T(n), n=0..15);  # _Alois P. Heinz_, Oct 12 2022
%t A357637 halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}];
%t A357637 Table[Length[Select[IntegerPartitions[n],halfats[#]==k&]],{n,0,12},{k,-n,n,2}]
%Y A357637 Row sums are A000041.
%Y A357637 Number of nonzero entries in row n appears to be A004525(n+1).
%Y A357637 Last entry of row n is A008619(n).
%Y A357637 Column sums appear to be A029862.
%Y A357637 The central column is A035363, skew A035544.
%Y A357637 For original alternating sum we have A344651, ordered A097805.
%Y A357637 The skew-alternating version is A357638.
%Y A357637 The central column of the reverse is A357639, skew A357640.
%Y A357637 The ordered version (compositions) is A357645, skew A357646.
%Y A357637 The reverse version is A357704, skew A357705.
%Y A357637 A351005 = alternately equal and unequal partitions, compositions A357643.
%Y A357637 A351006 = alternately unequal and equal partitions, compositions A357644.
%Y A357637 A357621 gives  half-alternating sum of standard compositions, skew A357623.
%Y A357637 A357629 gives half-alternating sum of prime indices, skew A357630.
%Y A357637 A357633 gives half-alternating sum of Heinz partition, skew  A357634.
%Y A357637 Cf. A053251, A357136, A357189, A357487, A357488, A357631, A357632, A357641.
%K A357637 nonn,tabl
%O A357637 0,6
%A A357637 _Gus Wiseman_, Oct 10 2022