This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357637 #16 Oct 12 2022 14:19:53 %S A357637 1,0,1,0,0,2,0,0,1,2,0,0,1,1,3,0,0,0,2,2,3,0,0,0,0,5,2,4,0,0,0,0,2,6, %T A357637 3,4,0,0,0,0,2,3,9,3,5,0,0,0,0,0,4,7,10,4,5,0,0,0,0,0,0,11,8,13,4,6,0, %U A357637 0,0,0,0,0,4,15,12,14,5,6,0,0,0,0,0,0,3,7,25,13,17,5,7 %N A357637 Triangle read by rows where T(n,k) is the number of integer partitions of n with half-alternating sum k, where k ranges from -n to n in steps of 2. %C A357637 We define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ... %H A357637 Alois P. Heinz, <a href="/A357637/b357637.txt">Rows n = 0..200, flattened</a> %F A357637 Conjecture: The column sums are A029862. %e A357637 Triangle begins: %e A357637 1 %e A357637 0 1 %e A357637 0 0 2 %e A357637 0 0 1 2 %e A357637 0 0 1 1 3 %e A357637 0 0 0 2 2 3 %e A357637 0 0 0 0 5 2 4 %e A357637 0 0 0 0 2 6 3 4 %e A357637 0 0 0 0 2 3 9 3 5 %e A357637 0 0 0 0 0 4 7 10 4 5 %e A357637 0 0 0 0 0 0 11 8 13 4 6 %e A357637 0 0 0 0 0 0 4 15 12 14 5 6 %e A357637 0 0 0 0 0 0 3 7 25 13 17 5 7 %e A357637 Row n = 9 counts the following partitions: %e A357637 (3222) (333) (432) (441) (9) %e A357637 (22221) (3321) (522) (531) (54) %e A357637 (21111111) (4221) (4311) (621) (63) %e A357637 (111111111) (32211) (5211) (711) (72) %e A357637 (222111) (6111) (81) %e A357637 (2211111) (33111) %e A357637 (3111111) (42111) %e A357637 (51111) %e A357637 (321111) %e A357637 (411111) %p A357637 b:= proc(n, i, s, t) option remember; `if`(n=0, x^s, `if`(i<1, 0, %p A357637 b(n, i-1, s, t)+b(n-i, min(n-i, i), s+`if`(t<2, i, -i), irem(t+1, 4)))) %p A357637 end: %p A357637 T:= n-> (p-> seq(coeff(p, x, i), i=-n..n, 2))(b(n$2, 0$2)): %p A357637 seq(T(n), n=0..15); # _Alois P. Heinz_, Oct 12 2022 %t A357637 halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}]; %t A357637 Table[Length[Select[IntegerPartitions[n],halfats[#]==k&]],{n,0,12},{k,-n,n,2}] %Y A357637 Row sums are A000041. %Y A357637 Number of nonzero entries in row n appears to be A004525(n+1). %Y A357637 Last entry of row n is A008619(n). %Y A357637 Column sums appear to be A029862. %Y A357637 The central column is A035363, skew A035544. %Y A357637 For original alternating sum we have A344651, ordered A097805. %Y A357637 The skew-alternating version is A357638. %Y A357637 The central column of the reverse is A357639, skew A357640. %Y A357637 The ordered version (compositions) is A357645, skew A357646. %Y A357637 The reverse version is A357704, skew A357705. %Y A357637 A351005 = alternately equal and unequal partitions, compositions A357643. %Y A357637 A351006 = alternately unequal and equal partitions, compositions A357644. %Y A357637 A357621 gives half-alternating sum of standard compositions, skew A357623. %Y A357637 A357629 gives half-alternating sum of prime indices, skew A357630. %Y A357637 A357633 gives half-alternating sum of Heinz partition, skew A357634. %Y A357637 Cf. A053251, A357136, A357189, A357487, A357488, A357631, A357632, A357641. %K A357637 nonn,tabl %O A357637 0,6 %A A357637 _Gus Wiseman_, Oct 10 2022