This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357638 #5 Oct 10 2022 20:47:17 %S A357638 1,0,1,0,1,1,0,1,1,1,0,0,3,1,1,0,0,1,4,1,1,0,0,1,4,4,1,1,0,0,0,4,5,4, %T A357638 1,1,0,0,0,1,10,5,4,1,1,0,0,0,1,5,13,5,4,1,1,0,0,0,0,4,13,14,5,4,1,1, %U A357638 0,0,0,0,1,13,17,14,5,4,1,1 %N A357638 Triangle read by rows where T(n,k) is the number of integer partitions of n with skew-alternating sum k, where k ranges from -n to n in steps of 2. %C A357638 We define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + .... %F A357638 Conjecture: The columns are palindromes with sums A298311. %e A357638 Triangle begins: %e A357638 1 %e A357638 0 1 %e A357638 0 1 1 %e A357638 0 1 1 1 %e A357638 0 0 3 1 1 %e A357638 0 0 1 4 1 1 %e A357638 0 0 1 4 4 1 1 %e A357638 0 0 0 4 5 4 1 1 %e A357638 0 0 0 1 10 5 4 1 1 %e A357638 0 0 0 1 5 13 5 4 1 1 %e A357638 0 0 0 0 4 13 14 5 4 1 1 %e A357638 0 0 0 0 1 13 17 14 5 4 1 1 %e A357638 0 0 0 0 1 5 28 18 14 5 4 1 1 %e A357638 Row n = 7 counts the following partitions: %e A357638 . . . (322) (43) (52) (61) (7) %e A357638 (331) (421) (511) %e A357638 (2221) (3211) (4111) %e A357638 (1111111) (22111) (31111) %e A357638 (211111) %t A357638 skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}]; %t A357638 Table[Length[Select[IntegerPartitions[n],skats[#]==k&]],{n,0,12},{k,-n,n,2}] %Y A357638 Row sums are A000041. %Y A357638 Number of nonzero entries in row n appears to be A004396(n+1). %Y A357638 First nonzero entry of each row appears to converge to A146325. %Y A357638 The central column is A035544, half A035363. %Y A357638 Column sums appear to be A298311. %Y A357638 For original alternating sum we have A344651, ordered A097805. %Y A357638 The half-alternating version is A357637. %Y A357638 The ordered version (compositions) is A357646, half A357645. %Y A357638 The reverse version is A357705, half A357704. %Y A357638 A351005 = alternately equal and unequal partitions, compositions A357643. %Y A357638 A351006 = alternately unequal and equal partitions, compositions A357644. %Y A357638 A357621 gives half-alternating sum of standard compositions, skew A357623. %Y A357638 A357629 gives half-alternating sum of prime indices, skew A357630. %Y A357638 A357633 gives half-alternating sum of Heinz partition, skew A357634. %Y A357638 Cf. A035594, A053251, A357136, A357189, A357486, A357487, A357488, A357624, A357631, A357632, A357636. %K A357638 nonn,tabl %O A357638 0,13 %A A357638 _Gus Wiseman_, Oct 10 2022