cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357638 Triangle read by rows where T(n,k) is the number of integer partitions of n with skew-alternating sum k, where k ranges from -n to n in steps of 2.

This page as a plain text file.
%I A357638 #5 Oct 10 2022 20:47:17
%S A357638 1,0,1,0,1,1,0,1,1,1,0,0,3,1,1,0,0,1,4,1,1,0,0,1,4,4,1,1,0,0,0,4,5,4,
%T A357638 1,1,0,0,0,1,10,5,4,1,1,0,0,0,1,5,13,5,4,1,1,0,0,0,0,4,13,14,5,4,1,1,
%U A357638 0,0,0,0,1,13,17,14,5,4,1,1
%N A357638 Triangle read by rows where T(n,k) is the number of integer partitions of n with skew-alternating sum k, where k ranges from -n to n in steps of 2.
%C A357638 We define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + ....
%F A357638 Conjecture: The columns are palindromes with sums A298311.
%e A357638 Triangle begins:
%e A357638   1
%e A357638   0  1
%e A357638   0  1  1
%e A357638   0  1  1  1
%e A357638   0  0  3  1  1
%e A357638   0  0  1  4  1  1
%e A357638   0  0  1  4  4  1  1
%e A357638   0  0  0  4  5  4  1  1
%e A357638   0  0  0  1 10  5  4  1  1
%e A357638   0  0  0  1  5 13  5  4  1  1
%e A357638   0  0  0  0  4 13 14  5  4  1  1
%e A357638   0  0  0  0  1 13 17 14  5  4  1  1
%e A357638   0  0  0  0  1  5 28 18 14  5  4  1  1
%e A357638 Row n = 7 counts the following partitions:
%e A357638   .  .  .  (322)      (43)      (52)     (61)  (7)
%e A357638            (331)      (421)     (511)
%e A357638            (2221)     (3211)    (4111)
%e A357638            (1111111)  (22111)   (31111)
%e A357638                       (211111)
%t A357638 skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}];
%t A357638 Table[Length[Select[IntegerPartitions[n],skats[#]==k&]],{n,0,12},{k,-n,n,2}]
%Y A357638 Row sums are A000041.
%Y A357638 Number of nonzero entries in row n appears to be A004396(n+1).
%Y A357638 First nonzero entry of each row appears to converge to A146325.
%Y A357638 The central column is A035544, half A035363.
%Y A357638 Column sums appear to be A298311.
%Y A357638 For original alternating sum we have A344651, ordered A097805.
%Y A357638 The half-alternating version is A357637.
%Y A357638 The ordered version (compositions) is A357646, half A357645.
%Y A357638 The reverse version is A357705, half A357704.
%Y A357638 A351005 = alternately equal and unequal partitions, compositions A357643.
%Y A357638 A351006 = alternately unequal and equal partitions, compositions A357644.
%Y A357638 A357621 gives half-alternating sum of standard compositions, skew A357623.
%Y A357638 A357629 gives half-alternating sum of prime indices, skew A357630.
%Y A357638 A357633 gives half-alternating sum of Heinz partition, skew  A357634.
%Y A357638 Cf. A035594, A053251, A357136, A357189, A357486, A357487, A357488, A357624, A357631, A357632, A357636.
%K A357638 nonn,tabl
%O A357638 0,13
%A A357638 _Gus Wiseman_, Oct 10 2022