This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357639 #19 Oct 19 2022 18:09:41 %S A357639 1,0,2,1,6,4,15,13,37,37,86,94,194,223,416,497,867,1056,1746,2159, %T A357639 3424,4272,6546,8215,12248,15418,22449,28311,40415,50985,71543,90222, %U A357639 124730,157132,214392,269696,363733,456739,609611,763969,1010203,1263248,1656335,2066552,2688866 %N A357639 Number of reversed integer partitions of 2n whose half-alternating sum is 0. %C A357639 We define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ... %H A357639 Alois P. Heinz, <a href="/A357639/b357639.txt">Table of n, a(n) for n = 0..250</a> (first 51 terms from Lucas A. Brown) %H A357639 Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/A357639.py">A357639.py</a>. %e A357639 The a(0) = 1 through a(6) = 15 reversed partitions: %e A357639 () . (112) (123) (134) (145) (156) %e A357639 (1111) (224) (235) (246) %e A357639 (2222) (11233) (336) %e A357639 (11222) (1111123) (3333) %e A357639 (1111112) (11244) %e A357639 (11111111) (11334) %e A357639 (12333) %e A357639 (1111134) %e A357639 (1111224) %e A357639 (1112223) %e A357639 (1122222) %e A357639 (11112222) %e A357639 (111111222) %e A357639 (11111111112) %e A357639 (111111111111) %t A357639 halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}]; %t A357639 Table[Length[Select[IntegerPartitions[2n],halfats[Reverse[#]]==0&]],{n,0,15}] %Y A357639 The non-reverse version is A035363/A035444. %Y A357639 The non-reverse skew version appears to be A035544/A035594. %Y A357639 These partitions are ranked by A357631, skew A357632. %Y A357639 The skew-alternating version is A357640. %Y A357639 This is the central column of A357704. %Y A357639 A000041 counts integer partitions (also reversed integer partitions). %Y A357639 A316524 gives alternating sum of prime indices, reverse A344616. %Y A357639 A344651 counts alternating sum of partitions by length, ordered A097805. %Y A357639 A351005 = alternately equal and unequal partitions, compositions A357643. %Y A357639 A351006 = alternately unequal and equal partitions, compositions A357644. %Y A357639 A357621 gives half-alternating sum of standard compositions, skew A357623. %Y A357639 A357629 gives half-alternating sum of prime indices, skew A357630. %Y A357639 A357633 gives half-alternating sum of Heinz partition, skew A357634. %Y A357639 A357637 counts partitions by half-alternating sum, skew A357637. %Y A357639 Cf. A029862, A053251, A357189, A357487, A357488, A357631, A357634, A357636, A357639, A357641, A357645. %K A357639 nonn %O A357639 0,3 %A A357639 _Gus Wiseman_, Oct 11 2022 %E A357639 a(31) onwards from _Lucas A. Brown_, Oct 19 2022