This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357640 #16 Oct 19 2022 18:49:38 %S A357640 1,1,2,3,6,9,16,24,40,59,93,136,208,299,445,632,921,1292,1848,2563, %T A357640 3610,4954,6881,9353,12835,17290,23469,31357,42150,55889,74463,98038, %U A357640 129573,169476,222339,289029,376618,486773,630313,810285,1043123,1334174 %N A357640 Number of reversed integer partitions of 2n whose skew-alternating sum is 0. %C A357640 We define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + ... %H A357640 Alois P. Heinz, <a href="/A357640/b357640.txt">Table of n, a(n) for n = 0..250</a> (first 51 terms from Lucas A. Brown) %H A357640 Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/A357640.py">A357640.py</a>. %e A357640 The a(0) = 1 through a(5) = 9 partitions: %e A357640 () (11) (22) (33) (44) (55) %e A357640 (1111) (2211) (2222) (3322) %e A357640 (111111) (3221) (4321) %e A357640 (3311) (4411) %e A357640 (221111) (222211) %e A357640 (11111111) (322111) %e A357640 (331111) %e A357640 (22111111) %e A357640 (1111111111) %t A357640 skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}]; %t A357640 Table[Length[Select[IntegerPartitions[2n],skats[Reverse[#]]==0&]],{n,0,15}] %Y A357640 The non-reverse half-alternating version is A035363/A035444. %Y A357640 The non-reverse version appears to be A035544/A035594. %Y A357640 These partitions are ranked by A357632, half A357631. %Y A357640 The half-alternating version is A357639. %Y A357640 A000041 counts integer partitions (also reversed integer partitions). %Y A357640 A316524 gives alternating sum of prime indices, reverse A344616. %Y A357640 A344651 counts alternating sum of partitions by length, ordered A097805. %Y A357640 A351005 = alternately equal and unequal partitions, compositions A357643. %Y A357640 A351006 = alternately unequal and equal partitions, compositions A357644. %Y A357640 A357621 gives half-alternating sum of standard compositions, skew A357623. %Y A357640 A357629 gives half-alternating sum of prime indices, skew A357630. %Y A357640 A357633 gives half-alternating sum of Heinz partition, skew A357634. %Y A357640 A357637 counts partitions by half-alternating sum, skew A357638. %Y A357640 Cf. A029862, A053251, A357136, A357189, A357487, A357488, A357636, A357641, A357645, A357704. %K A357640 nonn %O A357640 0,3 %A A357640 _Gus Wiseman_, Oct 11 2022 %E A357640 a(31) onwards from _Lucas A. Brown_, Oct 19 2022