This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357643 #16 Jun 01 2024 05:40:07 %S A357643 1,1,2,1,3,3,5,5,9,7,17,14,28,25,49,42,87,75,150,132,266,226,466,399, %T A357643 810,704,1421,1223,2488,2143,4352,3759,7621,6564,13339,11495,23339, %U A357643 20135,40852,35215,71512,61639,125148,107912,219040,188839,383391,330515,670998 %N A357643 Number of integer compositions of n into parts that are alternately equal and unequal. %H A357643 Alois P. Heinz, <a href="/A357643/b357643.txt">Table of n, a(n) for n = 0..1000</a> %F A357643 G.f.: (1 + Sum_{k>0} (x^k)/(1 + x^(2*k)))/(1 - Sum_{k>0} (x^(2*k))/(1 + x^(2*k))). - _John Tyler Rascoe_, May 28 2024 %e A357643 The a(1) = 1 through a(8) = 9 compositions: %e A357643 (1) (2) (3) (4) (5) (6) (7) (8) %e A357643 (11) (22) (113) (33) (115) (44) %e A357643 (112) (221) (114) (223) (116) %e A357643 (1122) (331) (224) %e A357643 (2211) (11221) (332) %e A357643 (1133) %e A357643 (3311) %e A357643 (22112) %e A357643 (112211) %t A357643 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],And@@Table[#[[i]]==#[[i+1]],{i,1,Length[#]-1,2}]&&And@@Table[#[[i]]!=#[[i+1]],{i,2,Length[#]-1,2}]&]],{n,0,15}] %o A357643 (PARI) %o A357643 C_x(N) = {my(x='x+O('x^N), h=(1+sum(k=1,N, (x^k)/(1+x^(2*k))))/(1-sum(k=1,N, (x^(2*k))/(1+x^(2*k))))); Vec(h)} %o A357643 C_x(50) \\ _John Tyler Rascoe_, May 28 2024 %Y A357643 The even-length version is A003242, ranked by A351010, partitions A035457. %Y A357643 Without equal relations we have A016116, equal only A001590 (apparently). %Y A357643 The version for partitions is A351005. %Y A357643 The opposite version is A357644, partitions A351006. %Y A357643 A011782 counts compositions. %Y A357643 A357621 gives half-alternating sum of standard compositions, skew A357623. %Y A357643 A357645 counts compositions by half-alternating sum, skew A357646. %Y A357643 Cf. A029862, A035544, A097805, A122129, A122134, A122135, A351003, A351004, A351007, A357136, A357641. %K A357643 nonn %O A357643 0,3 %A A357643 _Gus Wiseman_, Oct 12 2022 %E A357643 More terms from _Alois P. Heinz_, Oct 12 2022