cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357645 Triangle read by rows where T(n,k) is the number of integer compositions of n with half-alternating sum k, where k ranges from -n to n in steps of 2.

This page as a plain text file.
%I A357645 #5 Oct 12 2022 09:00:48
%S A357645 1,0,1,0,0,2,0,0,1,3,0,0,2,2,4,0,0,3,5,3,5,0,0,4,8,10,4,6,0,0,5,11,18,
%T A357645 18,5,7,0,0,6,14,28,36,30,6,8,0,0,7,17,41,63,65,47,7,9,0,0,8,20,58,
%U A357645 104,126,108,70,8,10,0,0,9,23,80,164,230,230,168,100,9,11
%N A357645 Triangle read by rows where T(n,k) is the number of integer compositions of n with half-alternating sum k, where k ranges from -n to n in steps of 2.
%C A357645 We define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ...
%e A357645 Triangle begins:
%e A357645    1
%e A357645    0   1
%e A357645    0   0   2
%e A357645    0   0   1   3
%e A357645    0   0   2   2   4
%e A357645    0   0   3   5   3   5
%e A357645    0   0   4   8  10   4   6
%e A357645    0   0   5  11  18  18   5   7
%e A357645    0   0   6  14  28  36  30   6   8
%e A357645    0   0   7  17  41  63  65  47   7   9
%e A357645    0   0   8  20  58 104 126 108  70   8  10
%e A357645 Row n = 6 counts the following compositions:
%e A357645   (114)   (123)    (132)     (141)  (6)
%e A357645   (1113)  (213)    (222)     (231)  (15)
%e A357645   (1122)  (1212)   (312)     (321)  (24)
%e A357645   (1131)  (1221)   (1311)    (411)  (33)
%e A357645           (2112)   (2211)           (42)
%e A357645           (2121)   (3111)           (51)
%e A357645           (11121)  (11112)
%e A357645           (11211)  (12111)
%e A357645                    (21111)
%e A357645                    (111111)
%t A357645 halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}];
%t A357645 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],halfats[#]==k&]],{n,0,10},{k,-n,n,2}]
%Y A357645 Row sums are A011782.
%Y A357645 For original alternating sum we have A097805, unordered A344651.
%Y A357645 Column k = n-4 appears to be A177787.
%Y A357645 The case of partitions is A357637, skew A357638.
%Y A357645 The central column k=0 is A357641 (aerated).
%Y A357645 The skew-alternating version is A357646.
%Y A357645 The reverse version for partitions is A357704, skew A357705.
%Y A357645 A351005 = alternately equal and unequal partitions, compositions A357643.
%Y A357645 A351006 = alternately unequal and equal partitions, compositions A357644.
%Y A357645 A357621 gives half-alternating sum of standard compositions, skew A357623.
%Y A357645 A357629 gives half-alternating sum of prime indices, skew A357630.
%Y A357645 A357633 gives half-alternating sum of Heinz partition, skew  A357634.
%Y A357645 Cf. A029862, A035363, A035544, A357136, A357631, A357639.
%K A357645 nonn,tabl
%O A357645 0,6
%A A357645 _Gus Wiseman_, Oct 12 2022