This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357645 #5 Oct 12 2022 09:00:48 %S A357645 1,0,1,0,0,2,0,0,1,3,0,0,2,2,4,0,0,3,5,3,5,0,0,4,8,10,4,6,0,0,5,11,18, %T A357645 18,5,7,0,0,6,14,28,36,30,6,8,0,0,7,17,41,63,65,47,7,9,0,0,8,20,58, %U A357645 104,126,108,70,8,10,0,0,9,23,80,164,230,230,168,100,9,11 %N A357645 Triangle read by rows where T(n,k) is the number of integer compositions of n with half-alternating sum k, where k ranges from -n to n in steps of 2. %C A357645 We define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ... %e A357645 Triangle begins: %e A357645 1 %e A357645 0 1 %e A357645 0 0 2 %e A357645 0 0 1 3 %e A357645 0 0 2 2 4 %e A357645 0 0 3 5 3 5 %e A357645 0 0 4 8 10 4 6 %e A357645 0 0 5 11 18 18 5 7 %e A357645 0 0 6 14 28 36 30 6 8 %e A357645 0 0 7 17 41 63 65 47 7 9 %e A357645 0 0 8 20 58 104 126 108 70 8 10 %e A357645 Row n = 6 counts the following compositions: %e A357645 (114) (123) (132) (141) (6) %e A357645 (1113) (213) (222) (231) (15) %e A357645 (1122) (1212) (312) (321) (24) %e A357645 (1131) (1221) (1311) (411) (33) %e A357645 (2112) (2211) (42) %e A357645 (2121) (3111) (51) %e A357645 (11121) (11112) %e A357645 (11211) (12111) %e A357645 (21111) %e A357645 (111111) %t A357645 halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}]; %t A357645 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],halfats[#]==k&]],{n,0,10},{k,-n,n,2}] %Y A357645 Row sums are A011782. %Y A357645 For original alternating sum we have A097805, unordered A344651. %Y A357645 Column k = n-4 appears to be A177787. %Y A357645 The case of partitions is A357637, skew A357638. %Y A357645 The central column k=0 is A357641 (aerated). %Y A357645 The skew-alternating version is A357646. %Y A357645 The reverse version for partitions is A357704, skew A357705. %Y A357645 A351005 = alternately equal and unequal partitions, compositions A357643. %Y A357645 A351006 = alternately unequal and equal partitions, compositions A357644. %Y A357645 A357621 gives half-alternating sum of standard compositions, skew A357623. %Y A357645 A357629 gives half-alternating sum of prime indices, skew A357630. %Y A357645 A357633 gives half-alternating sum of Heinz partition, skew A357634. %Y A357645 Cf. A029862, A035363, A035544, A357136, A357631, A357639. %K A357645 nonn,tabl %O A357645 0,6 %A A357645 _Gus Wiseman_, Oct 12 2022