This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357646 #5 Oct 12 2022 19:44:46 %S A357646 1,0,1,0,1,1,0,2,1,1,0,3,3,1,1,0,4,5,5,1,1,0,5,7,10,8,1,1,0,6,9,17,18, %T A357646 12,1,1,0,7,11,27,35,29,17,1,1,0,8,13,41,63,63,43,23,1,1,0,9,15,60, %U A357646 106,126,104,60,30,1,1,0,10,17,85,168,232,230,162,80,38,1,1 %N A357646 Triangle read by rows where T(n,k) is the number of integer compositions of n with skew-alternating sum k, where k ranges from -n to n in steps of 2. %C A357646 We define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + ... %e A357646 Triangle begins: %e A357646 1 %e A357646 0 1 %e A357646 0 1 1 %e A357646 0 2 1 1 %e A357646 0 3 3 1 1 %e A357646 0 4 5 5 1 1 %e A357646 0 5 7 10 8 1 1 %e A357646 0 6 9 17 18 12 1 1 %e A357646 0 7 11 27 35 29 17 1 1 %e A357646 0 8 13 41 63 63 43 23 1 1 %e A357646 0 9 15 60 106 126 104 60 30 1 1 %e A357646 Row n = 6 counts the following compositions: %e A357646 (15) (24) (33) (42) (51) (6) %e A357646 (114) (213) (312) (411) %e A357646 (123) (222) (321) (1113) %e A357646 (132) (231) (1122) (2112) %e A357646 (141) (1131) (1212) (3111) %e A357646 (1221) (2121) (11112) %e A357646 (1311) (2211) (11121) %e A357646 (11211) (21111) %e A357646 (12111) %e A357646 (111111) %t A357646 skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}]; %t A357646 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],skats[#]==k&]],{n,0,10},{k,-n,n,2}] %Y A357646 The central column k=0 is A001700 (aerated), half A357641. %Y A357646 Row sums are A011782. %Y A357646 For original alternating sum we have A097805, unordered A344651. %Y A357646 The skew-alternating sum of standard compositions is A357623, half A357621. %Y A357646 The case of partitions is A357638, half A357637. %Y A357646 The half-alternating version is A357645. %Y A357646 The reverse version for partitions is A357705, half A357704. %Y A357646 Cf. A029862, A035363, A035544, A177787, A357136, A357630, A357631, A357634, A357639, A357643, A357644. %K A357646 nonn,tabl %O A357646 0,8 %A A357646 _Gus Wiseman_, Oct 12 2022