cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357646 Triangle read by rows where T(n,k) is the number of integer compositions of n with skew-alternating sum k, where k ranges from -n to n in steps of 2.

This page as a plain text file.
%I A357646 #5 Oct 12 2022 19:44:46
%S A357646 1,0,1,0,1,1,0,2,1,1,0,3,3,1,1,0,4,5,5,1,1,0,5,7,10,8,1,1,0,6,9,17,18,
%T A357646 12,1,1,0,7,11,27,35,29,17,1,1,0,8,13,41,63,63,43,23,1,1,0,9,15,60,
%U A357646 106,126,104,60,30,1,1,0,10,17,85,168,232,230,162,80,38,1,1
%N A357646 Triangle read by rows where T(n,k) is the number of integer compositions of n with skew-alternating sum k, where k ranges from -n to n in steps of 2.
%C A357646 We define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + ...
%e A357646 Triangle begins:
%e A357646    1
%e A357646    0   1
%e A357646    0   1   1
%e A357646    0   2   1   1
%e A357646    0   3   3   1   1
%e A357646    0   4   5   5   1   1
%e A357646    0   5   7  10   8   1   1
%e A357646    0   6   9  17  18  12   1   1
%e A357646    0   7  11  27  35  29  17   1   1
%e A357646    0   8  13  41  63  63  43  23   1   1
%e A357646    0   9  15  60 106 126 104  60  30   1   1
%e A357646 Row n = 6 counts the following compositions:
%e A357646   (15)   (24)    (33)      (42)     (51)  (6)
%e A357646   (114)  (213)   (312)     (411)
%e A357646   (123)  (222)   (321)     (1113)
%e A357646   (132)  (231)   (1122)    (2112)
%e A357646   (141)  (1131)  (1212)    (3111)
%e A357646          (1221)  (2121)    (11112)
%e A357646          (1311)  (2211)    (11121)
%e A357646                  (11211)   (21111)
%e A357646                  (12111)
%e A357646                  (111111)
%t A357646 skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}];
%t A357646 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],skats[#]==k&]],{n,0,10},{k,-n,n,2}]
%Y A357646 The central column k=0 is A001700 (aerated), half A357641.
%Y A357646 Row sums are A011782.
%Y A357646 For original alternating sum we have A097805, unordered A344651.
%Y A357646 The skew-alternating sum of standard compositions is A357623, half A357621.
%Y A357646 The case of partitions is A357638, half A357637.
%Y A357646 The half-alternating version is A357645.
%Y A357646 The reverse version for partitions is A357705, half A357704.
%Y A357646 Cf. A029862, A035363, A035544, A177787, A357136, A357630, A357631, A357634, A357639, A357643, A357644.
%K A357646 nonn,tabl
%O A357646 0,8
%A A357646 _Gus Wiseman_, Oct 12 2022