cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357669 a(n) is the number of divisors of the powerful part of n.

This page as a plain text file.
%I A357669 #12 Sep 10 2023 04:51:38
%S A357669 1,1,1,3,1,1,1,4,3,1,1,3,1,1,1,5,1,3,1,3,1,1,1,4,3,1,4,3,1,1,1,6,1,1,
%T A357669 1,9,1,1,1,4,1,1,1,3,3,1,1,5,3,3,1,3,1,4,1,4,1,1,1,3,1,1,3,7,1,1,1,3,
%U A357669 1,1,1,12,1,1,3,3,1,1,1,5,5,1,1,3,1,1,1
%N A357669 a(n) is the number of divisors of the powerful part of n.
%C A357669 The corresponding sum of divisors of the powerful part of n is A295294.
%H A357669 Amiram Eldar, <a href="/A357669/b357669.txt">Table of n, a(n) for n = 1..10000</a>
%F A357669 a(n) = A000005(A057521(n)).
%F A357669 a(n) = A000005(n)/A056671(n).
%F A357669 a(n) = A000005(A064549(A003557(n))).
%F A357669 a(n) = 1 iff n is squarefree (A005117).
%F A357669 a(n) = A000005(n) iff n is powerful (A001694).
%F A357669 Multiplicative with a(p^e) = 1 if e = 1 and e+1 otherwise.
%F A357669 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} ((p^3 - p^2 + 2*p - 1)/(p^2*(p - 1))) = 2.71098009471568319328... .
%F A357669 Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/p^s + 2/p^(2*s) - 1/p^(3*s)). - _Amiram Eldar_, Sep 09 2023
%t A357669 f[p_, e_] := If[e == 1, 1, e + 1]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A357669 (PARI) a(n) = {my(e = factor(n)[,2]); prod(i=1, #e, if(e[i] == 1, 1, e[i] + 1))};
%Y A357669 Cf. A000005, A001694, A003557, A005117, A056671, A057521, A064549, A295294.
%K A357669 nonn,easy,mult
%O A357669 1,4
%A A357669 _Amiram Eldar_, Oct 08 2022