This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357680 #49 Nov 22 2022 23:07:36 %S A357680 0,1,3,4,7,11,16,29,42,72,121,191,367,693,1215,2221,4116,7577,13900, %T A357680 25634,48322,90046,169016,317819,600982,1138049,2158939,4103414, %U A357680 7818761,14923641,28534404,54624906,104786140,201233500,386914300,744876280,1435592207 %N A357680 a(n) is the number of primes that can be written as +-1! +- 2! +- 3! +- ... +- n!. %e A357680 For n=4, a(4)=4 means there exist 4 solutions ([17, 19, 29, 31]) as follows: %e A357680 17 = 1! - 2! - 3! + 4!; %e A357680 19 = -1! + 2! - 3! + 4!; %e A357680 29 = 1! - 2! + 3! + 4!; %e A357680 31 = -1! + 2! + 3! + 4!. %o A357680 (Python) %o A357680 from sympy import isprime,factorial %o A357680 def A357680(nmax): %o A357680 a=[0] %o A357680 t=[1] %o A357680 for n in range(2, nmax+1): %o A357680 k=factorial(n) %o A357680 s=[] %o A357680 for j in t: %o A357680 s.append(k-j) %o A357680 s.append(k+j) %o A357680 a.append(sum(1 for p in s if isprime(p))) %o A357680 t=s %o A357680 return(a) %o A357680 print(A357680(21)) %o A357680 (Python) %o A357680 from sympy import isprime %o A357680 from math import factorial %o A357680 from itertools import product %o A357680 def a(n): %o A357680 f = [2*factorial(i) for i in range(1, n+1)] %o A357680 t = sum(f)//2 %o A357680 return sum(1 for s in product([0, 1], repeat=n-1) if isprime(t-sum(f[i] for i in range(n-1) if s[i]))) %o A357680 print([a(n) for n in range(1, 20)]) # _Michael S. Branicky_, Oct 15 2022 %Y A357680 Cf. A000142, A059590, A089359. %K A357680 nonn %O A357680 1,3 %A A357680 _Zhining Yang_, Oct 09 2022 %E A357680 a(28)-a(30) from _Michael S. Branicky_, Oct 09 2022 %E A357680 a(31)-a(32) from _Michael S. Branicky_, Oct 10 2022 %E A357680 a(33)-a(34) from _Michael S. Branicky_, Oct 13 2022 %E A357680 a(35)-a(36) from _Michael S. Branicky_, Oct 26 2022 %E A357680 a(37) from _Michael S. Branicky_, Nov 13 2022