This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357681 #26 Feb 16 2025 08:34:04 %S A357681 1,1,0,1,0,0,1,0,1,0,1,0,2,3,0,1,0,3,6,8,0,1,0,4,9,18,25,0,1,0,5,12, %T A357681 30,70,97,0,1,0,6,15,44,135,330,434,0,1,0,7,18,60,220,705,1694,2095,0, %U A357681 1,0,8,21,78,325,1228,3906,9202,10707,0,1,0,9,24,98,450,1905,7196,22953,53334,58194,0 %N A357681 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. cosh( sqrt(k) * (exp(x) - 1) ). %H A357681 Andrew Howroyd, <a href="/A357681/b357681.txt">Table of n, a(n) for n = 0..1325</a> (first 51 antidiagonals) %H A357681 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BellPolynomial.html">Bell Polynomial</a>. %F A357681 T(n,k) = Sum_{j=0..floor(n/2)} k^j * Stirling2(n,2*j). %F A357681 T(n,k) = ( Bell_n(sqrt(k)) + Bell_n(-sqrt(k)) )/2, where Bell_n(x) is n-th Bell polynomial. %e A357681 Square array begins: %e A357681 1, 1, 1, 1, 1, 1, ... %e A357681 0, 0, 0, 0, 0, 0, ... %e A357681 0, 1, 2, 3, 4, 5, ... %e A357681 0, 3, 6, 9, 12, 15, ... %e A357681 0, 8, 18, 30, 44, 60, ... %e A357681 0, 25, 70, 135, 220, 325, ... %o A357681 (PARI) T(n, k) = sum(j=0, n\2, k^j*stirling(n, 2*j, 2)); %o A357681 (PARI) Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!); %o A357681 T(n, k) = round((Bell_poly(n, sqrt(k))+Bell_poly(n, -sqrt(k))))/2; %Y A357681 Columns k=0-4 give: A000007, A024430, A264036, A357615, A065143. %Y A357681 Column k=9 gives A357667. %Y A357681 Main diagonal gives A357682. %Y A357681 Cf. A292860. %K A357681 nonn,tabl %O A357681 0,13 %A A357681 _Seiichi Manyama_, Oct 09 2022