cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357689 a(n) = n/A204455(n), where A204455(n) is the product of odd noncomposite divisors of n.

Original entry on oeis.org

1, 2, 1, 4, 1, 2, 1, 8, 3, 2, 1, 4, 1, 2, 1, 16, 1, 6, 1, 4, 1, 2, 1, 8, 5, 2, 9, 4, 1, 2, 1, 32, 1, 2, 1, 12, 1, 2, 1, 8, 1, 2, 1, 4, 3, 2, 1, 16, 7, 10, 1, 4, 1, 18, 1, 8, 1, 2, 1, 4, 1, 2, 3, 64, 1, 2, 1, 4, 1, 2, 1, 24, 1, 2, 5, 4, 1, 2, 1, 16, 27, 2, 1, 4, 1, 2, 1, 8, 1, 6, 1, 4, 1, 2, 1, 32, 1, 14, 3, 20
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 09 2022

Keywords

Examples

			n = A204455(n)*a(n): 1 = 1*1, 2 = 1*2, 3 = 3*1, 4 = 1*4, 5 = 5*1, 6 = 3*2.
		

Crossrefs

Equals A324873 up to a(32) = 32.

Programs

  • Magma
    [(2*n)/&*PrimeDivisors(2*n): n in [1..100]];
    
  • Magma
    [n/&*[d: d in Divisors(n) | d*#[m: m in [0..n-1] | -m^d mod d eq m] eq
      #[m: m in [0..n-1] | m^d mod d eq m]]: n in [1..100]];
  • Mathematica
    f[p_, e_] := p^(e - If[p == 2, 0, 1]); a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 10 2022 *)

Formula

a(n)*A204455(n) = n.
a(n) = EvenPart(n)*A003557(OddPart(n)). - Peter Munn, Oct 09 2022
Multiplicative with a(p^e) = p^(e-1) if p > 2 and a(2^e) = 2^e. - Amiram Eldar, Oct 10 2022
a(n) = A003557(2*n). - Ridouane Oudra, Jul 12 2025