A357696 Cubefree primitive abundant numbers: cubefree abundant numbers having no abundant proper divisor.
12, 18, 20, 30, 42, 66, 70, 78, 102, 114, 138, 174, 186, 196, 222, 246, 258, 282, 308, 318, 354, 364, 366, 402, 426, 438, 474, 476, 498, 532, 534, 550, 572, 582, 606, 618, 642, 644, 650, 654, 678, 748, 762, 786, 812, 822, 834, 836, 868, 894, 906, 942, 978, 1002
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
cubeFreeQ[n_] := Max[FactorInteger[n][[;; , 2]]] < 3; primQ[n_] := DivisorSigma[-1, n] > 2 && AllTrue[n/FactorInteger[n][[;; , 1]], DivisorSigma[-1, #] <= 2 &]; Select[Range[1500], cubeFreeQ[#] && primQ[#] &]
-
PARI
is(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i, 2] > 2, return(0))); if(sigma(f, -1) <= 2, return(0)); for(i = 1, #f~, if(sigma(n/f[i,1], -1) > 2, return(0))); 1};