This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357699 #13 Oct 12 2022 04:35:45 %S A357699 24,40,72,120,168,200,264,280,312,360,392,408,440,456,504,520,540,552, %T A357699 600,616,680,696,728,744,760,792,840,888,920,936,952,984,1032,1064, %U A357699 1128,1144,1160,1176,1224,1240,1272,1288,1320,1368,1400,1416,1464,1480,1496,1560 %N A357699 Noncubefree numbers k such that A357698(k) > k. %C A357699 The cubefree numbers k such that A357698(k) > k are the cubefree abundant numbers (A357695). %C A357699 The least odd term is (3/4) * prime(4)# * prime(11)# = 31588277195475. %C A357699 The numbers of terms not exceeding 10^k, for k = 2, 3, ..., are 3, 32, 319, 3256, 32404, 323837, 3243328, 32425481, 324212022, ... . Apparently, the asymptotic density of this sequence exists and equals 0.0324... . %H A357699 Amiram Eldar, <a href="/A357699/b357699.txt">Table of n, a(n) for n = 1..10000</a> %e A357699 24 = 2^3 * 3 is a term since it is divisible by a cube and A357698(24) = 28 > 24. %t A357699 f[p_, e_] := 1 + p + If[e == 1, 0, p^2]; q[n_] := AnyTrue[(fct = FactorInteger[n])[[;;, 2]], # > 2 &] && Times @@ f @@@ fct > n; Select[Range[2, 2000], q] %o A357699 (PARI) is(n) = {my(f = factor(n)); if(n == 1 || vecmax(f[,2]) < 3, return(0)); prod(i=1, #f~, 1 + f[i,1] + if(f[i,2]==1, 0, f[i,1]^2)) > n}; %Y A357699 Cf. A046099, A357695, A357698. %K A357699 nonn %O A357699 1,1 %A A357699 _Amiram Eldar_, Oct 10 2022