A357704 Triangle read by rows where T(n,k) is the number of reversed integer partitions of n with half-alternating sum k, where k ranges from -n to n in steps of 2.
1, 0, 1, 0, 0, 2, 0, 0, 1, 2, 0, 0, 2, 0, 3, 0, 0, 2, 2, 0, 3, 0, 0, 3, 1, 3, 0, 4, 0, 0, 3, 2, 4, 2, 0, 4, 0, 0, 4, 2, 6, 2, 3, 0, 5, 0, 0, 4, 3, 5, 7, 3, 3, 0, 5, 0, 0, 5, 3, 8, 4, 10, 2, 4, 0, 6, 0, 0, 5, 4, 8, 6, 11, 9, 3, 4, 0, 6, 0, 0, 6, 4, 11, 5, 15, 8, 13, 3, 5, 0, 7
Offset: 0
Examples
Triangle begins: 1 0 1 0 0 2 0 0 1 2 0 0 2 0 3 0 0 2 2 0 3 0 0 3 1 3 0 4 0 0 3 2 4 2 0 4 0 0 4 2 6 2 3 0 5 0 0 4 3 5 7 3 3 0 5 0 0 5 3 8 4 10 2 4 0 6 0 0 5 4 8 6 11 9 3 4 0 6 0 0 6 4 11 5 15 8 13 3 5 0 7 0 0 6 5 11 8 13 19 10 13 4 5 0 7 0 0 7 5 14 8 19 13 25 9 17 4 6 0 8 0 0 7 6 14 11 19 17 29 23 13 18 5 6 0 8 Row n = 7 counts the following reversed partitions: . . (115) (124) (133) (11113) . (7) (1114) (1222) (223) (111112) (16) (1123) (11122) (25) (1111111) (34)
Crossrefs
Programs
-
Mathematica
halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}]; Table[Length[Select[Reverse/@IntegerPartitions[n],halfats[#]==k&]],{n,0,15},{k,-n,n,2}]
Comments