This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357705 #6 Oct 10 2022 20:47:08 %S A357705 1,0,1,0,1,1,0,2,0,1,0,2,2,0,1,0,3,1,2,0,1,0,3,2,3,2,0,1,0,4,2,4,1,3, %T A357705 0,1,0,4,3,3,6,2,3,0,1,0,5,3,5,3,7,2,4,0,1,0,5,4,5,4,9,7,3,4,0,1,0,6, %U A357705 4,7,3,12,5,10,3,5,0,1 %N A357705 Triangle read by rows where T(n,k) is the number of reversed integer partitions of n with skew-alternating sum k, where k ranges from -n to n in steps of 2. %C A357705 We define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + ... %e A357705 Triangle begins: %e A357705 1 %e A357705 0 1 %e A357705 0 1 1 %e A357705 0 2 0 1 %e A357705 0 2 2 0 1 %e A357705 0 3 1 2 0 1 %e A357705 0 3 2 3 2 0 1 %e A357705 0 4 2 4 1 3 0 1 %e A357705 0 4 3 3 6 2 3 0 1 %e A357705 0 5 3 5 3 7 2 4 0 1 %e A357705 0 5 4 5 4 9 7 3 4 0 1 %e A357705 0 6 4 7 3 12 5 10 3 5 0 1 %e A357705 0 6 5 7 5 10 16 7 11 4 5 0 1 %e A357705 0 7 5 9 5 14 11 18 7 14 4 6 0 1 %e A357705 Row n = 7 counts the following reversed partitions: %e A357705 . (16) (25) (34) (1123) (1114) . (7) %e A357705 (115) (223) (1222) (11113) %e A357705 (124) (111112) (11122) %e A357705 (133) (1111111) %t A357705 skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}]; %t A357705 Table[Length[Select[Reverse/@IntegerPartitions[n],skats[#]==k&]],{n,0,11},{k,-n,n,2}] %Y A357705 Row sums are A000041. %Y A357705 First nonzero entry of each row is A004526. %Y A357705 The central column is A357640, half A357639. %Y A357705 For original alternating sum we have A344651, ordered A097805. %Y A357705 The half-alternating version is A357704. %Y A357705 The ordered non-reverse version (compositions) is A357646, half A357645. %Y A357705 The non-reverse version is A357638, half A357637. %Y A357705 A351005 = alternately equal and unequal partitions, compositions A357643. %Y A357705 A351006 = alternately unequal and equal partitions, compositions A357644. %Y A357705 A357621 gives half-alternating sum of standard compositions, skew A357623. %Y A357705 A357629 gives half-alternating sum of prime indices, skew A357630. %Y A357705 A357633 gives half-alternating sum of Heinz partition, skew A357634. %Y A357705 Cf. A035363, A035594, A053251, A298311, A357136, A357189, A357487, A357488, A357624, A357631, A357632, A357636. %K A357705 nonn,tabl %O A357705 0,8 %A A357705 _Gus Wiseman_, Oct 10 2022