cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357705 Triangle read by rows where T(n,k) is the number of reversed integer partitions of n with skew-alternating sum k, where k ranges from -n to n in steps of 2.

This page as a plain text file.
%I A357705 #6 Oct 10 2022 20:47:08
%S A357705 1,0,1,0,1,1,0,2,0,1,0,2,2,0,1,0,3,1,2,0,1,0,3,2,3,2,0,1,0,4,2,4,1,3,
%T A357705 0,1,0,4,3,3,6,2,3,0,1,0,5,3,5,3,7,2,4,0,1,0,5,4,5,4,9,7,3,4,0,1,0,6,
%U A357705 4,7,3,12,5,10,3,5,0,1
%N A357705 Triangle read by rows where T(n,k) is the number of reversed integer partitions of n with skew-alternating sum k, where k ranges from -n to n in steps of 2.
%C A357705 We define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + ...
%e A357705 Triangle begins:
%e A357705   1
%e A357705   0  1
%e A357705   0  1  1
%e A357705   0  2  0  1
%e A357705   0  2  2  0  1
%e A357705   0  3  1  2  0  1
%e A357705   0  3  2  3  2  0  1
%e A357705   0  4  2  4  1  3  0  1
%e A357705   0  4  3  3  6  2  3  0  1
%e A357705   0  5  3  5  3  7  2  4  0  1
%e A357705   0  5  4  5  4  9  7  3  4  0  1
%e A357705   0  6  4  7  3 12  5 10  3  5  0  1
%e A357705   0  6  5  7  5 10 16  7 11  4  5  0  1
%e A357705   0  7  5  9  5 14 11 18  7 14  4  6  0  1
%e A357705 Row n = 7 counts the following reversed partitions:
%e A357705   .  (16)   (25)   (34)       (1123)  (1114)   .  (7)
%e A357705      (115)  (223)  (1222)             (11113)
%e A357705      (124)         (111112)           (11122)
%e A357705      (133)         (1111111)
%t A357705 skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}];
%t A357705 Table[Length[Select[Reverse/@IntegerPartitions[n],skats[#]==k&]],{n,0,11},{k,-n,n,2}]
%Y A357705 Row sums are A000041.
%Y A357705 First nonzero entry of each row is A004526.
%Y A357705 The central column is A357640, half A357639.
%Y A357705 For original alternating sum we have A344651, ordered A097805.
%Y A357705 The half-alternating version is A357704.
%Y A357705 The ordered non-reverse version (compositions) is A357646, half A357645.
%Y A357705 The non-reverse version is A357638, half A357637.
%Y A357705 A351005 = alternately equal and unequal partitions, compositions A357643.
%Y A357705 A351006 = alternately unequal and equal partitions, compositions A357644.
%Y A357705 A357621 gives half-alternating sum of standard compositions, skew A357623.
%Y A357705 A357629 gives half-alternating sum of prime indices, skew A357630.
%Y A357705 A357633 gives half-alternating sum of Heinz partition, skew  A357634.
%Y A357705 Cf. A035363, A035594, A053251, A298311, A357136, A357189, A357487, A357488, A357624, A357631, A357632, A357636.
%K A357705 nonn,tabl
%O A357705 0,8
%A A357705 _Gus Wiseman_, Oct 10 2022