cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357707 Numbers whose prime indices have equal number of parts congruent to each of 1 and 3 (mod 4).

This page as a plain text file.
%I A357707 #7 Oct 12 2022 19:44:51
%S A357707 1,3,7,9,10,13,19,21,27,29,30,34,37,39,43,49,53,55,57,61,62,63,70,71,
%T A357707 79,81,87,89,90,91,94,100,101,102,107,111,113,115,117,129,130,131,133,
%U A357707 134,139,147,151,159,163,165,166,169,171,173,181,183,186,187,189
%N A357707 Numbers whose prime indices have equal number of parts congruent to each of 1 and 3 (mod 4).
%C A357707 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%e A357707 The terms together with their prime indices begin:
%e A357707      1: {}
%e A357707      3: {2}
%e A357707      7: {4}
%e A357707      9: {2,2}
%e A357707     10: {1,3}
%e A357707     13: {6}
%e A357707     19: {8}
%e A357707     21: {2,4}
%e A357707     27: {2,2,2}
%e A357707     29: {10}
%e A357707     30: {1,2,3}
%t A357707 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A357707 Select[Range[100],Count[primeMS[#],_?(Mod[#,4]==1&)]==Count[primeMS[#],_?(Mod[#,4]==3&)]&]
%Y A357707 These partitions are counted by A035544.
%Y A357707 Includes A066207 = products of primes of even index.
%Y A357707 The conjugate partitions are ranked by A357636, reverse A357632.
%Y A357707 The conjugate reverse version is A357640 (aerated).
%Y A357707 A056239 adds up prime indices, row sums of A112798.
%Y A357707 A316524 gives alternating sum of prime indices, reverse A344616.
%Y A357707 A344651 counts partitions by alternating sum, ordered A097805.
%Y A357707 A357705 counts reversed partitions by skew-alternating sum, half A357704.
%Y A357707 Cf. A035363, A035550, A035594, A053251, A298311, A357486, A357623, A357638.
%K A357707 nonn
%O A357707 1,2
%A A357707 _Gus Wiseman_, Oct 12 2022