This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357707 #7 Oct 12 2022 19:44:51 %S A357707 1,3,7,9,10,13,19,21,27,29,30,34,37,39,43,49,53,55,57,61,62,63,70,71, %T A357707 79,81,87,89,90,91,94,100,101,102,107,111,113,115,117,129,130,131,133, %U A357707 134,139,147,151,159,163,165,166,169,171,173,181,183,186,187,189 %N A357707 Numbers whose prime indices have equal number of parts congruent to each of 1 and 3 (mod 4). %C A357707 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A357707 The terms together with their prime indices begin: %e A357707 1: {} %e A357707 3: {2} %e A357707 7: {4} %e A357707 9: {2,2} %e A357707 10: {1,3} %e A357707 13: {6} %e A357707 19: {8} %e A357707 21: {2,4} %e A357707 27: {2,2,2} %e A357707 29: {10} %e A357707 30: {1,2,3} %t A357707 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A357707 Select[Range[100],Count[primeMS[#],_?(Mod[#,4]==1&)]==Count[primeMS[#],_?(Mod[#,4]==3&)]&] %Y A357707 These partitions are counted by A035544. %Y A357707 Includes A066207 = products of primes of even index. %Y A357707 The conjugate partitions are ranked by A357636, reverse A357632. %Y A357707 The conjugate reverse version is A357640 (aerated). %Y A357707 A056239 adds up prime indices, row sums of A112798. %Y A357707 A316524 gives alternating sum of prime indices, reverse A344616. %Y A357707 A344651 counts partitions by alternating sum, ordered A097805. %Y A357707 A357705 counts reversed partitions by skew-alternating sum, half A357704. %Y A357707 Cf. A035363, A035550, A035594, A053251, A298311, A357486, A357623, A357638. %K A357707 nonn %O A357707 1,2 %A A357707 _Gus Wiseman_, Oct 12 2022