This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357709 #5 Oct 17 2022 07:07:22 %S A357709 1,0,0,1,0,1,1,1,2,2,4,3,6,6,9,11,13,18,21,28,32,44,49,65,76,96,114, %T A357709 141,170,204,250,295,361,425,516,606,734,858,1031,1210,1440,1690,2000, %U A357709 2347,2759,3240,3786,4441,5174,6053,7030,8210,9509,11074,12807,14870 %N A357709 Number of integer partitions of n whose length is twice their alternating sum. %C A357709 The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. The alternating sum of a partition is also the number of odd conjugate parts. %e A357709 The a(1) = 0 through a(12) = 6 partitions: %e A357709 . . 21 . 32 3111 43 3221 54 3331 65 4332 %e A357709 4211 411111 4222 422111 4431 %e A357709 4321 521111 5322 %e A357709 5311 5421 %e A357709 6411 %e A357709 51111111 %t A357709 ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}]; %t A357709 Table[Length[Select[IntegerPartitions[n],Length[#]==2ats[#]&]],{n,0,30}] %Y A357709 This is the "twice" version of A357189, ranked by A357486. %Y A357709 The version for compositions is A357847. %Y A357709 These partitions are ranked by A357848. %Y A357709 A000041 counts partitions, strict A000009. %Y A357709 A025047 counts alternating compositions. %Y A357709 A103919 counts partitions by alternating sum, full triangle A344651. %Y A357709 A357136 counts compositions by alternating sum, full triangle A097805. %Y A357709 A357182 counts compositions w/ length = alternating sum, ranked by A357184. %Y A357709 Cf. A004526, A262046, A262977, A301987, A357183, A357485, A357488. %K A357709 nonn %O A357709 0,9 %A A357709 _Gus Wiseman_, Oct 16 2022