This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357710 #15 Sep 24 2023 13:03:43 %S A357710 0,1,2,2,3,4,4,8,4,15,17,22,48,40,130,88,287,323,543,1084,1145,2938, %T A357710 3141,6928,9770,15585,29249,37540,78464,103289,194265,299752,475086, %U A357710 846933,1216749,2261920,3320935,5795349,9292376,14825858,25570823,39030115,68265801,106030947,178696496 %N A357710 Number of integer compositions of n with integer geometric mean. %e A357710 The a(6) = 4 through a(9) = 15 compositions: %e A357710 (6) (7) (8) (9) %e A357710 (33) (124) (44) (333) %e A357710 (222) (142) (2222) (1224) %e A357710 (111111) (214) (11111111) (1242) %e A357710 (241) (1422) %e A357710 (412) (2124) %e A357710 (421) (2142) %e A357710 (1111111) (2214) %e A357710 (2241) %e A357710 (2412) %e A357710 (2421) %e A357710 (4122) %e A357710 (4212) %e A357710 (4221) %e A357710 (111111111) %t A357710 Table[Length[Select[Join @@ Permutations/@IntegerPartitions[n],IntegerQ[GeometricMean[#]]&]],{n,0,15}] %o A357710 (Python) %o A357710 from math import prod, factorial %o A357710 from sympy import integer_nthroot %o A357710 from sympy.utilities.iterables import partitions %o A357710 def A357710(n): return sum(factorial(s)//prod(factorial(d) for d in p.values()) for s,p in partitions(n,size=True) if integer_nthroot(prod(a**b for a, b in p.items()),s)[1]) if n else 0 # _Chai Wah Wu_, Sep 24 2023 %Y A357710 The unordered version (partitions) is A067539, ranked by A326623. %Y A357710 Compositions with integer average are A271654, partitions A067538. %Y A357710 Subsets whose geometric mean is an integer are A326027. %Y A357710 The version for factorizations is A326028. %Y A357710 The strict case is A339452, partitions A326625. %Y A357710 These compositions are ranked by A357490. %Y A357710 A011782 counts compositions. %Y A357710 Cf. A025047, A051293, A078174, A078175, A102627, A320322, A326622, A326624, A326641, A357182, A357183. %K A357710 nonn %O A357710 0,3 %A A357710 _Gus Wiseman_, Oct 15 2022 %E A357710 More terms from _David A. Corneth_, Oct 17 2022