This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357712 #18 Feb 16 2025 08:34:04 %S A357712 1,1,0,1,0,0,1,0,1,0,1,0,2,3,0,1,0,3,6,12,0,1,0,4,9,26,60,0,1,0,5,12, %T A357712 42,140,360,0,1,0,6,15,60,240,896,2520,0,1,0,7,18,80,360,1614,6636, %U A357712 20160,0,1,0,8,21,102,500,2520,12474,55804,181440,0,1,0,9,24,126,660,3620,20160,108900,525168,1814400,0 %N A357712 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. cosh( sqrt(k) * log(1-x) ). %H A357712 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PochhammerSymbol.html">Pochhammer Symbol</a>. %F A357712 T(n,k) = Sum_{j=0..floor(n/2)} k^j * |Stirling1(n,2*j)|. %F A357712 T(n,k) = ( (sqrt(k))_n + (-sqrt(k))_n )/2, where (x)_n is the Pochhammer symbol. %F A357712 T(0,k) = 1, T(1,k) = 0; T(n,k) = (2*n-3) * T(n-1,k) - (n^2-4*n+4-k) * T(n-2,k). %e A357712 Square array begins: %e A357712 1, 1, 1, 1, 1, 1, ... %e A357712 0, 0, 0, 0, 0, 0, ... %e A357712 0, 1, 2, 3, 4, 5, ... %e A357712 0, 3, 6, 9, 12, 15, ... %e A357712 0, 12, 26, 42, 60, 80, ... %e A357712 0, 60, 140, 240, 360, 500, ... %o A357712 (PARI) T(n, k) = sum(j=0, n\2, k^j*abs(stirling(n, 2*j, 1))); %o A357712 (PARI) T(n, k) = round((prod(j=0, n-1, sqrt(k)+j)+prod(j=0, n-1, -sqrt(k)+j)))/2; %Y A357712 Columns k=0-4 give: A000007, (-1)^n * A105752(n), A263687, A357703, A357711. %Y A357712 Main diagonal gives A357683. %Y A357712 Cf. A357681. %K A357712 nonn,tabl %O A357712 0,13 %A A357712 _Seiichi Manyama_, Oct 10 2022