This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357715 #27 Nov 17 2022 05:31:10 %S A357715 5,5,0,5,5,2,7,6,8,1,8,8,4,6,9,4,1,5,2,8,2,8,8,3,8,3,2,7,6,4,3,5,5,0, %T A357715 7,1,8,1,0,3,5,9,7,3,4,4,0,3,2,6,3,4,6,5,3,4,6,2,7,0,3,0,6,2,4,7,6,3, %U A357715 8,0,7,7,5,0,6,8,6,9,1,9,4,0,2,6,3,8,1,1,9,7,2,4,4,0,2,8,0 %N A357715 Decimal expansion of sqrt(16 + 32 / sqrt(5)). %C A357715 The perimeter of a golden rectangle inscribed in a unit circle. %C A357715 The width and height of the rectangle are: %C A357715 W = sqrt(2 - 2 / sqrt(5)) = A179290. %C A357715 H = sqrt(2 + 2 / sqrt(5)) = A121570. %F A357715 Equals (4 / sqrt(5)) * sqrt(5 + 2 * sqrt(5)) = A356869 * A019970. %F A357715 Equals sqrt(5 + 2 * sqrt(5)) / (sqrt(5) / 4) = A019970 / A204188. %F A357715 Equals 4 * sqrt(1 + 2 / sqrt(5)) = 4 * A019952. %F A357715 Equals 4 / sqrt(5 - 2 * sqrt(5)) = 4 / A019934. %e A357715 5.5055276818846941... %p A357715 sqrt(16 + 32 / sqrt(5)); %t A357715 Sqrt[16 + 32/Sqrt[5]] %o A357715 (PARI) sqrt(16 + 32 / sqrt(5)) %Y A357715 Cf. A019934, A019952, A019970, A121570, A179290, A204188, A356869. %K A357715 nonn,cons,easy %O A357715 1,1 %A A357715 _Michal Paulovic_, Oct 10 2022