This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357727 #23 Feb 16 2025 08:34:04 %S A357727 1,0,-4,-12,-12,100,852,4004,9940,-36828,-726316,-6174300,-35968812, %T A357727 -109708508,702818004,16677814436,188794428628,1542659688996, %U A357727 8359981681364,-3068614764636,-868989327994668,-15076627082974940,-179727483880747308 %N A357727 Expansion of e.g.f. cos( 2 * (exp(x) - 1) ). %H A357727 Andrew Howroyd, <a href="/A357727/b357727.txt">Table of n, a(n) for n = 0..200</a> %H A357727 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BellPolynomial.html">Bell Polynomial</a>. %F A357727 a(n) = Sum_{k=0..floor(n/2)} (-4)^k * Stirling2(n,2*k). %F A357727 a(n) = 1; a(n) = -4 * Sum_{k=0..n-1} binomial(n-1, k) * A357738(k). %F A357727 a(n) = ( Bell_n(2 * i) + Bell_n(-2 * i) )/2, where Bell_n(x) is n-th Bell polynomial and i is the imaginary unit. %o A357727 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(cos(2*(exp(x)-1)))) %o A357727 (PARI) a(n) = sum(k=0, n\2, (-4)^k*stirling(n, 2*k, 2)); %o A357727 (PARI) Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!); %o A357727 a(n) = round((Bell_poly(n, 2*I)+Bell_poly(n, -2*I)))/2; %Y A357727 Column k=4 of A357728. %Y A357727 Cf. A065143, A357719, A357738. %K A357727 sign %O A357727 0,3 %A A357727 _Seiichi Manyama_, Oct 10 2022