This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357729 #19 Feb 16 2025 08:34:04 %S A357729 1,0,-2,-9,-12,175,1938,9506,-24248,-1065663,-12021610,-56195425, %T A357729 677072220,19979234080,251733387514,1135594212255,-29317384858352, %U A357729 -901607623649489,-13233854770928514,-68574233644270566,2258648937829442660,81748108921355457777 %N A357729 a(n) = Sum_{k=0..floor(n/2)} (-n)^k * Stirling2(n,2*k). %H A357729 Andrew Howroyd, <a href="/A357729/b357729.txt">Table of n, a(n) for n = 0..200</a> %H A357729 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BellPolynomial.html">Bell Polynomial</a>. %F A357729 a(n) = n! * [x^n] cos( sqrt(n) * (exp(x) - 1) ). %F A357729 a(n) = ( Bell_n(sqrt(n) * i) + Bell_n(-sqrt(n) * i) )/2, where Bell_n(x) is n-th Bell polynomial and i is the imaginary unit. %o A357729 (PARI) a(n) = sum(k=0, n\2, (-n)^k*stirling(n, 2*k, 2)); %o A357729 (PARI) a(n) = round(n!*polcoef(cos(sqrt(n)*(exp(x+x*O(x^n))-1)), n)); %o A357729 (PARI) Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!); %o A357729 a(n) = round((Bell_poly(n, sqrt(n)*I)+Bell_poly(n, -sqrt(n)*I)))/2; %Y A357729 Main diagonal of A357728. %Y A357729 Cf. A357682, A357721. %K A357729 sign %O A357729 0,3 %A A357729 _Seiichi Manyama_, Oct 11 2022