cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357743 Square array A(n, k), n, k >= 0, read by antidiagonals: A(0, 0) = 0, A(0, 1) = A(1, 0) = 1, for n, k >= 0, A(2*n, 2*k) = A(n, k), A(2*n, 2*k+1) = A(n, k) + A(n, k+1), A(2*n+1, 2*k) = A(n, k) + A(n+1, k), A(2*n+1, 2*k+1) = A(n, k+1) + A(n+1, k).

This page as a plain text file.
%I A357743 #52 Dec 05 2022 20:46:31
%S A357743 0,1,1,1,2,1,2,3,3,2,1,3,2,3,1,3,4,5,5,4,3,2,5,3,6,3,5,2,3,5,6,5,5,6,
%T A357743 5,3,1,4,3,5,2,5,3,4,1,4,5,7,8,7,7,8,7,5,4,3,7,4,9,5,10,5,9,4,7,3,5,8,
%U A357743 9,7,8,11,11,8,7,9,8,5,2,7,5,8,3,9,6,9,3,8,5,7,2
%N A357743 Square array A(n, k), n, k >= 0, read by antidiagonals: A(0, 0) = 0, A(0, 1) = A(1, 0) = 1, for n, k >= 0, A(2*n, 2*k) = A(n, k), A(2*n, 2*k+1) = A(n, k) + A(n, k+1), A(2*n+1, 2*k) = A(n, k) + A(n+1, k), A(2*n+1, 2*k+1) = A(n, k+1) + A(n+1, k).
%C A357743 This sequence is closely related to A002487 and A355855: we can build this sequence:
%C A357743 - by starting from an equilateral triangle with values 0, 1, 1:
%C A357743         0
%C A357743        / \
%C A357743       1---1
%C A357743 - and repeatedly applying the following substitution:
%C A357743                            t
%C A357743                           / \
%C A357743         t                /   \
%C A357743        / \     -->     t+u---t+v
%C A357743       u---v            / \   / \
%C A357743                       /   \ /   \
%C A357743                      u----u+v----v
%C A357743 The sequence reduced modulo an odd prime number presents rich nonperiodic patterns (see illustrations in Links section).
%H A357743 Rémy Sigrist, <a href="/A357743/a357743.png">Colored representation of the first 512 antidiagonals</a> (where the color is function of A(n, k) mod 3)
%H A357743 Rémy Sigrist, <a href="/A357743/a357743_1.png">Colored representation of the first 512 antidiagonals</a> (where the color is function of A(n, k) mod 5)
%H A357743 <a href="/index/St#Stern">Index entries for sequences related to Stern's sequences</a>
%F A357743 A(n, k) = A(k, n).
%F A357743 A(n, 0) = A002487(n).
%F A357743 A(n, 1) = A007306(n+1) for any n > 0.
%e A357743 Array A(n, k) begins:
%e A357743   n\k |  0  1  2   3  4   5   6   7  8   9  10
%e A357743   ----+---------------------------------------
%e A357743     0 |  0  1  1   2  1   3   2   3  1   4   3
%e A357743     1 |  1  2  3   3  4   5   5   4  5   7   8
%e A357743     2 |  1  3  2   5  3   6   3   7  4   9   5
%e A357743     3 |  2  3  5   6  5   5   8   9  7   8  11
%e A357743     4 |  1  4  3   5  2   7   5   8  3   9   6
%e A357743     5 |  3  5  6   5  7  10  11   9  8  11  11
%e A357743     6 |  2  5  3   8  5  11   6  11  5  10   5
%e A357743     7 |  3  4  7   9  8   9  11  10  7   7  12
%e A357743     8 |  1  5  4   7  3   8   5   7  2   9   7
%e A357743     9 |  4  7  9   8  9  11  10   7  9  14  17
%e A357743    10 |  3  8  5  11  6  11   5  12  7  17  10
%e A357743 .
%e A357743 The first antidiagonals are:
%e A357743               0
%e A357743              1 1
%e A357743             1 2 1
%e A357743            2 3 3 2
%e A357743           1 3 2 3 1
%e A357743          3 4 5 5 4 3
%e A357743         2 5 3 6 3 5 2
%e A357743        3 5 6 5 5 6 5 3
%e A357743       1 4 3 5 2 5 3 4 1
%e A357743      4 5 7 8 7 7 8 7 5 4
%o A357743 (PARI) A(n,k) = { if (n==0 && k==0, 0, n==1 && k==0, 1, n==0 && k==1, 1, n%2==0 && k%2==0, A(n/2,k/2), n%2==0, A(n/2,(k-1)/2) + A(n/2,(k+1)/2), k%2==0, A((n-1)/2,k/2) + A((n+1)/2,k/2), A((n+1)/2,(k-1)/2) + A((n-1)/2,(k+1)/2)); }
%Y A357743 See A358871 for a similar sequence.
%Y A357743 Cf. A002487, A007306, A355855.
%K A357743 nonn,tabl
%O A357743 0,5
%A A357743 _Rémy Sigrist_, Nov 29 2022