This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357763 #12 Mar 31 2023 05:12:24 %S A357763 1,2,4,8,16,28,56,112,224,448,728,1456,2912,5824,10192,11648,20384, %T A357763 27664,40768,55328,110656,221312,442624,885248,1263808,1770496, %U A357763 2527616,3430336,5055232,6860672,10110464,13721344,16155776,20220928,24012352,32311552,48024704 %N A357763 Numbers m such that A357761(m) > A357761(k) for all k < m. %C A357763 First differs from A330289 at n = 28. %C A357763 Since A357761(2^n) = n + 1, A357761 is unbounded and this sequence is infinite. %C A357763 The corresponding record values are 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 20, 24, 28, 30, 32, ... . %H A357763 Amiram Eldar, <a href="/A357763/b357763.txt">Table of n, a(n) for n = 1..48</a> %t A357763 f[n_] := -DivisorSum[n, (-1)^DigitCount[#, 2, 1] &]; fm = 0; s = {}; Do[f1 = f[n]; If[f1 > fm, fm = f1; AppendTo[s, n]], {n, 1, 10^5}]; s %o A357763 (PARI) f(n) = -sumdiv(n, d, (-1)^hammingweight(d)); %o A357763 lista(nmax) = {my(fm = 0); for(n = 1, nmax, f1 = f(n); if(f1 > fm, fm = f1; print1(n, ", ")))}; %Y A357763 Cf. A330289, A355969, A356020, A357761, A357764. %K A357763 nonn,base %O A357763 1,2 %A A357763 _Amiram Eldar_, Oct 12 2022