cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357764 Numbers m such that A357761(m) < A357761(k) for all k < m.

This page as a plain text file.
%I A357764 #8 Oct 13 2022 05:49:42
%S A357764 1,3,9,15,30,60,90,180,360,540,720,1080,2160,4320,6120,8640,12240,
%T A357764 18360,24480,36720,73440,146880,257040,293760,514080,587520,807840,
%U A357764 1028160,1615680,1884960,2056320,2827440,3231360,3769920,5654880,7539840,9424800,11309760,18849600
%N A357764 Numbers m such that A357761(m) < A357761(k) for all k < m.
%C A357764 Since A357761(15*2^n) = -2*(n+1), A357761 is unbounded from below and this sequence is infinite.
%C A357764 The corresponding records of low value are 1, 0, -1, -2, -4, -6, -8, -12, -16, -18, -20, -24, -30, -36, ... .
%t A357764 f[n_] := -DivisorSum[n, (-1)^DigitCount[#, 2, 1] &]; fm = 2; s = {}; Do[f1 = f[n]; If[f1 < fm, fm = f1; AppendTo[s, n]], {n, 1, 10^5}]; s
%o A357764 (PARI) f(n) = -sumdiv(n, d, (-1)^hammingweight(d));
%o A357764 lista(nmax) = {my(fm = 2); for(n = 1, nmax, f1 = f(n); if(f1 < fm, fm = f1; print1(n, ", ")))};
%Y A357764 Cf. A355969, A356020, A357761, A357763.
%K A357764 nonn,base
%O A357764 1,2
%A A357764 _Amiram Eldar_, Oct 12 2022