cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357774 Binary expansions of odd numbers with two zeros in their binary expansion.

This page as a plain text file.
%I A357774 #34 Dec 19 2024 23:40:42
%S A357774 1001,10011,10101,11001,100111,101011,101101,110011,110101,111001,
%T A357774 1001111,1010111,1011011,1011101,1100111,1101011,1101101,1110011,
%U A357774 1110101,1111001,10011111,10101111,10110111,10111011,10111101,11001111,11010111,11011011,11011101,11100111,11101011
%N A357774 Binary expansions of odd numbers with two zeros in their binary expansion.
%C A357774 For m >= 4, there are A000217(m-3) terms with m digits.
%F A357774 a(n) = A007088(A357773(n)).
%t A357774 FromDigits[IntegerDigits[#, 2]] & /@ Select[Range[1, 250, 2], DigitCount[#, 2, 0] == 2 &] (* _Amiram Eldar_, Oct 19 2022 *)
%o A357774 (Python)
%o A357774 from itertools import combinations, count, islice
%o A357774 def agen(): # generator of terms
%o A357774     for d in count(4):
%o A357774         b, c = 2**d - 1, 2**(d-1)
%o A357774         for i, j in combinations(range(1, d-1), 2):
%o A357774             yield int(bin(b - (c >> i) - (c >> j))[2:])
%o A357774 print(list(islice(agen(), 30))) # _Michael S. Branicky_, Oct 19 2022
%o A357774 (Python)
%o A357774 from itertools import count, islice
%o A357774 def A357774_gen(): # generator of terms
%o A357774     for l in count(2):
%o A357774         m = (10**(l+2)-1)//9
%o A357774         for i in range(l,0,-1):
%o A357774             k = m-10**i
%o A357774             yield from (k-10**j for j in range(i-1,0,-1))
%o A357774 A357774_list = list(islice(A357774_gen(),30)) # _Chai Wah Wu_, Feb 19 2023
%o A357774 (Python)
%o A357774 from math import isqrt, comb
%o A357774 from sympy import integer_nthroot
%o A357774 def A357774(n):
%o A357774     a = (m:=integer_nthroot(6*n, 3)[0])+(n>comb(m+2,3))+3
%o A357774     b = isqrt((j:=comb(a-1,3)-n+1)<<3)+3>>1
%o A357774     c = j-comb((r:=isqrt(w:=j<<1))+(w>r*(r+1)),2)
%o A357774     return (10**a-1)//9-10**b-10**c # _Chai Wah Wu_, Dec 19 2024
%o A357774 (PARI) isok(k) = (k%2) && (#binary(k) == hammingweight(k)+2); \\ A357773
%o A357774 f(n) = fromdigits(binary(n), 10); \\ A007088
%o A357774 lista(nn) = apply(f, select(isok, [1..nn])); \\ _Michel Marcus_, Oct 19 2022
%Y A357774 Cf. A000217, A007088, A357773.
%Y A357774 A267524 \ {1, 10, 100} and A267705 \ {1, 10} are two subsequences.
%Y A357774 Similar, but with k zeros in their binary expansion: A000042 (k=0), A190619 (k=1).
%K A357774 nonn,base
%O A357774 1,1
%A A357774 _Bernard Schott_, Oct 19 2022