This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357793 #15 Mar 14 2023 04:56:55 %S A357793 1,1,1,4,14,64,314,1633,8826,49107,279349,1617290,9498099,56445918, %T A357793 338817460,2051182532,12509647159,76785827812,474000090118, %U A357793 2940761033970,18327028477625,114677403429121,720191795608082,4537925593859911,28679991910774479,181761824439041725 %N A357793 a(n) = coefficient of x^n in A(x) = Sum_{n>=0} x^n*F(x)^n * (1 - x^n*F(x)^n)^n, where F(x) = 1 + x*F(x)^3 is a g.f. of A001764. %C A357793 Related identity: 0 = Sum_{n=-oo..+oo} x^n * (1 - x^n*F(x)^n)^n / (1 - x*F(x)^2)^n, where F(x) = 1 + x*F(x)^3. %H A357793 Paul D. Hanna, <a href="/A357793/b357793.txt">Table of n, a(n) for n = 0..400</a> %F A357793 Given F(x) = 1 + x*F(x)^3, g.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following. %F A357793 (1) A(x) = Sum_{n>=0} x^n * F(x)^n * (1 - x^n*F(x)^n)^n. %F A357793 (2) A(x) = Sum_{n>=1} (-1)^(n-1) * (x*F(x))^(n*(n-1)) / (1 - x^n*F(x)^n)^n. %F A357793 (3) A(x) = Sum_{n>=0} x^n * (1 - x^n*F(x)^n)^n / (1 - x*F(x)^2)^n. %F A357793 (4) A(x) = Sum_{n>=1} (-1)^(n-1) * x^(n*(n-1)) * F(x)^(n^2) * (1 - x*F(x)^2)^n / (1 - x^n*F(x)^n)^n. %F A357793 a(n) ~ c * 3^(3*n) / (n^(3/2) * 2^(2*n)), where c = 0.0403028056146458801802487899052088995113692232406693619.... - _Vaclav Kotesovec_, Mar 14 2023 %e A357793 G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 14*x^4 + 64*x^5 + 314*x^6 + 1633*x^7 + 8826*x^8 + 49107*x^9 + 279349*x^10 + 1617290*x^11 + 9498099*x^12 + ... %e A357793 where %e A357793 F(x) = 1 + x*F(x)*(1 - x*F(x)) + x^2*F(x)^2*(1 - x^2*F(x)^2) + x^3*F(x)^3*(1 - x^3*F(x)^3) + x^4*F(x)^4*(1 - x^4*F(x)^4) + ... + x^n * F(x)^n * (1 - x^n*F(x)^n)^n + ... %e A357793 also, %e A357793 F(x) = 1/(1 - x*F(x)) - (x*F(x))^2/(1 - x^2*F(x)^2)^2 + (x*F(x))^6/(1 - x^3*F(x)^3)^3 - (x*F(x))^12/(1 - x^4*F(x)^4)^4 + (x*F(x))^20/(1 - x^5*F(x)^4)^5 +- ... + (-1)^(n-1) * (x*F(x))^(n*(n-1)) / (1 - x^n*F(x)^n)^n + ... %e A357793 Where F(x) = 1 + x*F(x)^3 begins %e A357793 F(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 + 7752*x^7 + 43263*x^8 + 246675*x^9 + 1430715*x^10 + ... + A001764(n)*x^n + ... %e A357793 SPECIFIC VALUES. %e A357793 The radius of convergence of the power series A(x) equals 4/27. %e A357793 The power series A(x) converges at x = 4/27 to %e A357793 A(4/27) = 1.2311920996301390036800654138630946234233891541082821783156... %e A357793 which equals the following sums: %e A357793 (1) A(4/27) = Sum_{n>=0} 2^n * (9^n - 2^n)^n / 9^(n*(n+1)), %e A357793 (2) A(4/27) = Sum_{n>=1} (-1)^(n-1) * 2^(n*(n-1)) * 9^n / (9^n - 2^n)^n. %o A357793 (PARI) {a(n) = my(A=1, F = (serreverse(x/(1+x + O(x^(n+2)))^3)/x)^(1/3)); %o A357793 A = sum(m=0,n, x^m * F^m * (1 - x^m*F^m)^m); polcoeff(A,n)} %o A357793 for(n=0,30, print1(a(n),", ")) %o A357793 (PARI) {a(n) = my(A=1, F = (serreverse(x/(1+x + O(x^(n+3)))^3)/x)^(1/3)); %o A357793 A = sum(m=1,n+1, (-1)^(m-1) * (x*F)^(m*(m-1)) / (1 - x^m*F^m)^m); polcoeff(A,n)} %o A357793 for(n=0,30, print1(a(n),", ")) %Y A357793 Cf. A357792, A001764. %K A357793 nonn %O A357793 0,4 %A A357793 _Paul D. Hanna_, Dec 20 2022