This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357812 #22 Oct 20 2022 17:35:33 %S A357812 1,1,1,3,4,10,20,35,70,126,210,330,495,715,1001,1365,4368,6188,8568, %T A357812 11628,15504,20349,26334,33649,42504,53130,65780,80730,98280,118755, %U A357812 142506,169911,906192,1107568,1344904,1623160,1947792,2324784,2760681,3262623,3838380 %N A357812 Number of subsets of [n] in which exactly half of the elements are powers of 2. %H A357812 Alois P. Heinz, <a href="/A357812/b357812.txt">Table of n, a(n) for n = 0..10000</a> %F A357812 a(n) = binomial(n,A029837(n+1)). %F A357812 a(n) = binomial(n,A113473(n)) for n>0, a(0) = 1. %F A357812 a(n) = Sum_{j>=0} binomial(A029837(n+1),j)*binomial(n-A029837(n+1),j). %e A357812 a(6) = 20: {}, {1,3}, {1,5}, {1,6}, {2,3}, {2,5}, {2,6}, {3,4}, {4,5}, {4,6}, {1,2,3,5}, {1,2,3,6}, {1,2,5,6}, {1,3,4,5}, {1,3,4,6}, {1,4,5,6}, {2,3,4,5}, {2,3,4,6}, {2,4,5,6}, {1,2,3,4,5,6}. %p A357812 a:= n-> binomial(n, max(0, 1+ilog[2](n))): %p A357812 seq(a(n), n=0..40); %o A357812 (Python) %o A357812 from math import comb %o A357812 def A357812(n): return comb(n,n.bit_length()) # _Chai Wah Wu_, Oct 14 2022 %Y A357812 Cf. A000079, A029837, A037031, A102366, A113473, A180272, A357927. %K A357812 nonn %O A357812 0,4 %A A357812 _Alois P. Heinz_, Oct 13 2022