cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357816 a(n) is the first even number k such that there are exactly n pairs (p,q) where p and q are prime, p<=q, p+q = k, and p+A001414(k) and q+A001414(k) are also prime.

Original entry on oeis.org

2, 16, 60, 72, 220, 132, 374, 276, 492, 638, 636, 852, 620, 854, 996, 1056, 1026, 1212, 2070, 1530, 2610, 3976, 3844, 1488, 1572, 4812, 4770, 3942, 2484, 5028, 3234, 4668, 6036, 3276, 5172, 5532, 6756, 2730, 6084, 4230, 6390, 9132, 14134, 4620, 9674, 10692, 6600, 8910, 10836, 12204, 18852, 9660
Offset: 0

Views

Author

J. M. Bergot and Robert Israel, Oct 13 2022

Keywords

Examples

			a(3) = 72 because A001414(72) = 12 and there are 3 pairs: (5,67), (11,61) and (31,41) where 5+67 = 11+61 = 31+41 = 72 and 5, 5+12 = 17, 67, 67+12 = 79, 11, 11+12 = 23, 61, 61+12 = 73, 31, 31+12 = 43, 41, and 41+12 = 53 are all prime; and this is the first even number with 3 such pairs.
		

Crossrefs

Programs

  • Maple
    sp:= proc(n) local t; add(t[1]*t[2],t=ifactors(n)[2]) end proc:
    f:= proc(n) local s,p,q,count;
        s:= sp(n);
        if s::odd then return 0 fi;
        p:= 2; count:= 0;
        do
          p:= nextprime(p);
          q:= n-p;
          if p > q then return count fi;
          if isprime(p+s) and isprime(q) and isprime(q+s) then count:= count+1 fi;
        od;
    end proc:
    V:= Array(0..60): count:= 0:
    for n from 2 by 2 while count < 61 do
      v:= f(n);
      if v <= 60 and V[v] = 0 then V[v]:= n; count:= count+1;  fi
    od:
    convert(V,list);
  • Mathematica
    a[n_] := Block[{k=2, s}, While[True, s = Plus @@ Times @@@ FactorInteger@ k; If[n == Length@ Select[ Prime@ Range@ PrimePi[k/2], And @@ PrimeQ@ {k-#, #+s, k-#+s} &], Break[]]; k += 2]; k]; a /@ Range[0, 20] (* Giovanni Resta, Oct 24 2022 *)