cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357818 Numerators of the partial sums of the reciprocals of the Dedekind psi function (A001615).

This page as a plain text file.
%I A357818 #11 Oct 15 2022 07:17:25
%S A357818 1,4,19,7,23,2,17,53,55,169,175,89,641,1303,331,1345,1373,1387,7061,
%T A357818 2377,9613,29119,29539,29749,6017,6065,6121,6163,31151,31291,15803,
%U A357818 3977,16013,48319,24317,12211,233899,58774,472757,59344,119543,1918673,21249043,21336823
%N A357818 Numerators of the partial sums of the reciprocals of the Dedekind psi function (A001615).
%H A357818 Steven R. Finch, <a href="https://doi.org/10.1017/9781316997741">Mathematical Constants II</a>, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 100, p. 169.
%H A357818 V. Sita Ramaiah and D. Suryanarayana, <a href="http://doi.org/10.18926/mjou/33820">Sums of reciprocals of some multiplicative functions</a>, Mathematical Journal of Okayama University, Vol. 21, No. 2 (1979), pp. 155-164.
%H A357818 László Tóth, <a href="https://www.emis.de/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1.
%F A357818 a(n) = numerator(Sum_{k=1..n} 1/psi(k)).
%F A357818 a(n)/A357819(n) ~ C * (log(n) + gamma + D) + O(log(n)^(2/3) * log(log(n))^(4/3) / n), where C =  Product_{p prime} (1 - 1/(p*(p+1))) (A065463), and D = Sum_{p prime} log(p)/(p^2+p-1) (A335707) (Sita Ramaiah and Suryanarayana, 1979; Tóth, 2017).
%e A357818 Fractions begin with 1, 4/3, 19/12, 7/4, 23/12, 2, 17/8, 53/24, 55/24, 169/72, 175/72, 89/36, ...
%t A357818 psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); psi[1] = 1; Numerator[Accumulate[1/Array[psi[#] &, 50]]]
%o A357818 (PARI) f(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615
%o A357818 a(n) = numerator(sum(k=1, n, 1/f(k))); \\ _Michel Marcus_, Oct 15 2022
%Y A357818 Cf. A001615, A173290, A357819 (denominators).
%Y A357818 Cf. A001620, A065463, A335707.
%Y A357818 Similar sequences: A028415, A104528, A212717.
%K A357818 nonn,frac
%O A357818 1,2
%A A357818 _Amiram Eldar_, Oct 14 2022