cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357820 Numerators of the partial alternating sums of the reciprocals of the Dedekind psi function (A001615).

This page as a plain text file.
%I A357820 #9 Oct 15 2022 07:21:24
%S A357820 1,2,11,3,11,5,23,7,23,65,71,17,64,491,64,491,173,505,2651,2581,10639,
%T A357820 1151,3593,3523,727,237,2189,2147,11071,10931,5623,2759,5623,16589,
%U A357820 2113,8347,162373,159979,20318,160549,163969,649891,7292441,7204661,7292441,7204661
%N A357820 Numerators of the partial alternating sums of the reciprocals of the Dedekind psi function (A001615).
%H A357820 Olivier Bordellès and Benoit Cloitre, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Bordelles/bord14.html">An alternating sum involving the reciprocal of certain multiplicative functions</a>, Journal of Integer Sequences, Vol. 16 (2013), Article 13.6.3.
%H A357820 László Tóth, <a href="https://www.emis.de/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1.
%F A357820 a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/psi(k)).
%F A357820 a(n)/A357821(n) ~ (C/5) * (log(n) + gamma + D + 24*log(2)/5) + O(log(n)^(2/3) * log(log(n))^(4/3) / n), where C =  Product_{p prime} (1 - 1/(p*(p+1))) (A065463), and D = Sum_{p prime} log(p)/(p^2+p-1) (A335707) (Bordellès and Cloitre, 2013; Tóth, 2017).
%e A357820 Fractions begin with 1, 2/3, 11/12, 3/4, 11/12, 5/6, 23/24, 7/8, 23/24, 65/72, 71/72, 17/18, ...
%t A357820 psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); psi[1] = 1; Numerator[Accumulate[1/Array[(-1)^(# + 1)*psi[#] &, 50]]]
%o A357820 (PARI) f(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615
%o A357820 a(n) = numerator(sum(k=1, n, (-1)^(k+1)/f(k))); \\ _Michel Marcus_, Oct 15 2022
%Y A357820 Cf. A001615, A173290, A357821 (denominators).
%Y A357820 Cf. A001620, A065463, A335707.
%Y A357820 Similar sequence: A211177.
%K A357820 nonn,frac
%O A357820 1,2
%A A357820 _Amiram Eldar_, Oct 14 2022