This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357825 #36 Mar 23 2023 03:33:33 %S A357825 1,1,2,9,98,4150,562692,211106945,404883552194,1766902576146876, %T A357825 40519034229909243476,2708397617879598970178238, %U A357825 658332084097982587522119612196,735037057881394837614680080889845116,2030001034486747324990010196845670569155080 %N A357825 Total number of n-tuples of semi-Dyck paths from (0,0) to (n,n-2*j) for j = 0..floor(n/2). %H A357825 Alois P. Heinz, <a href="/A357825/b357825.txt">Table of n, a(n) for n = 0..60</a> %H A357825 Vaclav Kotesovec, <a href="/A357825/a357825.jpg">Graph - the asymptotic ratio (5000 terms)</a> %H A357825 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a> %F A357825 a(n) = A357824(n,n). %F A357825 a(n) = Sum_{j=0..floor(n/2)} A008315(n,j)^n. %F A357825 a(n) = Sum_{j=0..n} A120730(n,j)^n. %F A357825 a(n) mod 2 = 1 <=> n in { A000225 }. %F A357825 From _Vaclav Kotesovec_, Nov 17 2022: (Start) %F A357825 a(n)^(1/n) ~ exp(-1/2) * 2^(n + 3/2) / (sqrt(Pi)*n). %F A357825 Limit_{n->oo} a(n) / (2^(n^2 + 3*n/2) / (n^n * exp(n/2) * Pi^(n/2))) does not exist, see also graph. (End) %F A357825 Conjecture: the superconguence a(2*p-1) == 1 (mod p^3) holds for all primes p >= 5 (checked up to p = 101). - _Peter Bala_, Mar 20 2023 %p A357825 b:= proc(x, y) option remember; `if`(y<0 or y>x, 0, %p A357825 `if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1]))) %p A357825 end: %p A357825 a:= n-> add(b(n, n-2*j)^n, j=0..n/2): %p A357825 seq(a(n), n=0..15); %t A357825 Table[Sum[(Binomial[n, k]*(n - 2*k + 1)/(n - k + 1))^n, {k, 0, n/2}], {n, 0, 20}] (* _Vaclav Kotesovec_, Nov 17 2022 *) %Y A357825 Main diagonal of A357824. %Y A357825 Cf. A000108, A000225, A008315, A120730, A357871. %K A357825 nonn,easy %O A357825 0,3 %A A357825 _Alois P. Heinz_, Oct 14 2022