cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357828 a(n) = Sum_{k=0..floor(n/3)} |Stirling1(n,3*k)|.

This page as a plain text file.
%I A357828 #23 Jun 10 2025 11:32:53
%S A357828 1,0,0,1,6,35,226,1645,13454,122661,1236018,13656951,164290182,
%T A357828 2138379243,29949509226,449188719525,7183702249542,122039922034485,
%U A357828 2194928052851898,41666342509646127,832547791827455886,17466905709043534107,383908421683657311714
%N A357828 a(n) = Sum_{k=0..floor(n/3)} |Stirling1(n,3*k)|.
%H A357828 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PochhammerSymbol.html">Pochhammer Symbol</a>.
%F A357828 Let w = exp(2*Pi*i/3) and set F(x) = (exp(x) + exp(w*x) + exp(w^2*x))/3 = 1 + x^3/3! + x^6/6! + ... . Then the e.g.f. for the sequence is F(-log(1-x)).
%F A357828 a(n) = ( (1)_n + (w)_n + (w^2)_n )/3, where (x)_n is the Pochhammer symbol.
%F A357828 a(n) ~ n!/3. - _Vaclav Kotesovec_, Jun 10 2025
%o A357828 (PARI) a(n) = sum(k=0, n\3, abs(stirling(n, 3*k, 1)));
%o A357828 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N\3, (-log(1-x))^(3*k)/(3*k)!)))
%o A357828 (PARI) Pochhammer(x, n) = prod(k=0, n-1, x+k);
%o A357828 a(n) = my(w=(-1+sqrt(3)*I)/2); round(Pochhammer(1, n)+Pochhammer(w, n)+Pochhammer(w^2, n))/3;
%Y A357828 Cf. A357829, A357830.
%Y A357828 Cf. A000142, A001710, A384836, A384837.
%Y A357828 Cf. A003703.
%K A357828 nonn
%O A357828 0,5
%A A357828 _Seiichi Manyama_, Oct 14 2022