This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357837 #43 Jan 25 2023 09:20:56 %S A357837 0,4,10,20,32,46,64,84,106,132,160,190,224,260,298,340,384,430,480, %T A357837 532,586,644,704,766,832,900,970,1044,1120,1198,1280,1364,1450,1540, %U A357837 1632,1726,1824,1924,2026,2132,2240,2350,2464,2580,2698,2820,2944,3070,3200,3332 %N A357837 a(n) is the sum of the lengths of all the segments used to draw a square of side n representing a fishbone pattern using symmetric L-shaped tiles with side length 2. %H A357837 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,1,-2,1). %F A357837 a(n) = 2*(ceiling(2*(n+1)^2/3) - 1). %F A357837 a(n) = 2*(A071619(n+1) - 1). %F A357837 a(n) = 2*(1 + n^2 - 2*(n - 2)*floor((n - 1)/3) + 3*floor((n - 1)/3)^2) for n > 0. %F A357837 a(n) = Sum_{k=1..n} A047410(k+1) for n > 0. %F A357837 a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n > 4. %F A357837 O.g.f.: 2*x*(2 + x + 2*x^2 - x^3)/((1 - x)^3*(1 + x + x^2)). %F A357837 E.g.f.: 2*exp(-x/2)*(exp(3*x/2)*(6*x*(3 + x) - 1) + cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2))/9. %e A357837 Illustrations for n = 1..8: %e A357837 _ _ _ _ _ _ %e A357837 |_| | _| | _|_| %e A357837 |_|_| |_| _| %e A357837 |_|_|_| %e A357837 a(1) = 4 a(2) = 10 a(3) = 20 %e A357837 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ %e A357837 | _|_| | | _|_| _| | _|_| _|_| %e A357837 |_| _|_| |_| _|_| | |_| _|_| _| %e A357837 |_|_| _| |_|_| _|_| |_|_| _|_| | %e A357837 |_ _|_|_| | _|_| _| | _|_| _|_| %e A357837 |_|_ _|_|_| |_| _|_| _| %e A357837 |_|_|_ _|_|_| %e A357837 a(4) = 32 a(5) = 46 a(6) = 64 %e A357837 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ %e A357837 | _|_| _|_| | | _|_| _|_| _| %e A357837 |_| _|_| _|_| |_| _|_| _|_| | %e A357837 |_|_| _|_| _| |_|_| _|_| _|_| %e A357837 | _|_| _|_| | | _|_| _|_| _| %e A357837 |_| _|_| _|_| |_| _|_| _|_| | %e A357837 |_|_| _|_| _| |_|_| _|_| _|_| %e A357837 |_ _|_|_ _|_|_| | _|_| _|_| _| %e A357837 |_|_ _|_|_ _|_|_| %e A357837 a(7) = 84 a(8) = 106 %t A357837 Table[2(Ceiling[2(n+1)^2/3]-1),{n,0,49}] %Y A357837 Cf. A002264, A002522, A005843, A047410 (first differences), A071619, A211547. %Y A357837 Cf. A345118. %K A357837 nonn,easy %O A357837 0,2 %A A357837 _Stefano Spezia_, Oct 17 2022