cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357837 a(n) is the sum of the lengths of all the segments used to draw a square of side n representing a fishbone pattern using symmetric L-shaped tiles with side length 2.

This page as a plain text file.
%I A357837 #43 Jan 25 2023 09:20:56
%S A357837 0,4,10,20,32,46,64,84,106,132,160,190,224,260,298,340,384,430,480,
%T A357837 532,586,644,704,766,832,900,970,1044,1120,1198,1280,1364,1450,1540,
%U A357837 1632,1726,1824,1924,2026,2132,2240,2350,2464,2580,2698,2820,2944,3070,3200,3332
%N A357837 a(n) is the sum of the lengths of all the segments used to draw a square of side n representing a fishbone pattern using symmetric L-shaped tiles with side length 2.
%H A357837 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,1,-2,1).
%F A357837 a(n) = 2*(ceiling(2*(n+1)^2/3) - 1).
%F A357837 a(n) = 2*(A071619(n+1) - 1).
%F A357837 a(n) = 2*(1 + n^2 - 2*(n - 2)*floor((n - 1)/3) + 3*floor((n - 1)/3)^2) for n > 0.
%F A357837 a(n) = Sum_{k=1..n} A047410(k+1) for n > 0.
%F A357837 a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n > 4.
%F A357837 O.g.f.: 2*x*(2 + x + 2*x^2 - x^3)/((1 - x)^3*(1 + x + x^2)).
%F A357837 E.g.f.: 2*exp(-x/2)*(exp(3*x/2)*(6*x*(3 + x) - 1) + cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2))/9.
%e A357837 Illustrations for n = 1..8:
%e A357837         _           _ _          _ _ _
%e A357837        |_|         |  _|        |  _|_|
%e A357837                    |_|_|        |_|  _|
%e A357837                                 |_|_|_|
%e A357837     a(1) = 4     a(2) = 10     a(3) = 20
%e A357837      _ _ _ _     _ _ _ _ _    _ _ _ _ _ _
%e A357837     |  _|_| |   |  _|_|  _|  |  _|_|  _|_|
%e A357837     |_|  _|_|   |_|  _|_| |  |_|  _|_|  _|
%e A357837     |_|_|  _|   |_|_|  _|_|  |_|_|  _|_| |
%e A357837     |_ _|_|_|   |  _|_|  _|  |  _|_|  _|_|
%e A357837                 |_|_ _|_|_|  |_|  _|_|  _|
%e A357837                              |_|_|_ _|_|_|
%e A357837     a(4) = 32    a(5) = 46     a(6) = 64
%e A357837       _ _ _ _ _ _ _      _ _ _ _ _ _ _ _
%e A357837      |  _|_|  _|_| |    |  _|_|  _|_|  _|
%e A357837      |_|  _|_|  _|_|    |_|  _|_|  _|_| |
%e A357837      |_|_|  _|_|  _|    |_|_|  _|_|  _|_|
%e A357837      |  _|_|  _|_| |    |  _|_|  _|_|  _|
%e A357837      |_|  _|_|  _|_|    |_|  _|_|  _|_| |
%e A357837      |_|_|  _|_|  _|    |_|_|  _|_|  _|_|
%e A357837      |_ _|_|_ _|_|_|    |  _|_|  _|_|  _|
%e A357837                         |_|_ _|_|_ _|_|_|
%e A357837         a(7) = 84           a(8) = 106
%t A357837 Table[2(Ceiling[2(n+1)^2/3]-1),{n,0,49}]
%Y A357837 Cf. A002264, A002522, A005843, A047410 (first differences), A071619, A211547.
%Y A357837 Cf. A345118.
%K A357837 nonn,easy
%O A357837 0,2
%A A357837 _Stefano Spezia_, Oct 17 2022