cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357843 Numerators of the partial alternating sums of the reciprocals of the number of divisors function (A000005).

This page as a plain text file.
%I A357843 #14 Oct 17 2022 01:43:18
%S A357843 1,1,1,2,7,11,17,7,3,5,7,19,25,11,25,113,143,133,163,51,14,51,61,117,
%T A357843 391,361,391,371,431,52,119,19,81,19,81,709,799,377,799,1553,1733,211,
%U A357843 467,226,467,889,979,961,1021,991,259,503,274,2147,2237,274,1141,274
%N A357843 Numerators of the partial alternating sums of the reciprocals of the number of divisors function (A000005).
%H A357843 László Tóth, <a href="https://www.emis.de/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1.
%F A357843 a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/d(k)), where d(k) = A000005(k).
%F A357843 a(n)/A357844(n) ~ n * Sum_{k=1..N} B_k/log(n)^(k-1/2) + O(n/log(n)^(N+1/2)), where B_k are constants, and in particular B_1 = (1/log(2) - 1) * (1/sqrt(Pi)) * Product_{p prime} sqrt(p^2-p) * log(p/(p-1)) (Tóth, 2017).
%e A357843 Fractions begin with 1, 1/2, 1, 2/3, 7/6, 11/12, 17/12, 7/6, 3/2, 5/4, 7/4, 19/12, ...
%t A357843 Numerator[Accumulate[Array[(-1)^(# + 1)/DivisorSigma[0, #] &, 60]]]
%o A357843 (PARI) lista(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / numdiv(k); print1(numerator(s), ", "))};
%o A357843 (Python)
%o A357843 from fractions import Fraction
%o A357843 from sympy import divisor_count
%o A357843 def A357843(n): return sum(Fraction(1 if k&1 else -1, divisor_count(k)) for k in range(1,n+1)).numerator # _Chai Wah Wu_, Oct 16 2022
%Y A357843 Cf. A000005, A307704, A357844 (denominators).
%Y A357843 Similar sequences: A104528, A211177, A357820.
%K A357843 nonn,frac
%O A357843 1,4
%A A357843 _Amiram Eldar_, Oct 16 2022