cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357844 Denominators of the partial alternating sums of the reciprocals of the number of divisors function (A000005).

This page as a plain text file.
%I A357844 #9 Oct 17 2022 01:43:23
%S A357844 1,2,1,3,6,12,12,6,2,4,4,12,12,6,12,60,60,60,60,20,5,20,20,40,120,120,
%T A357844 120,120,120,15,30,5,20,5,20,180,180,90,180,360,360,45,90,45,90,180,
%U A357844 180,180,180,180,45,90,45,360,360,45,180,45,90,180,180,45,90,630
%N A357844 Denominators of the partial alternating sums of the reciprocals of the number of divisors function (A000005).
%C A357844 See A357843 for more details.
%H A357844 László Tóth, <a href="https://www.emis.de/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1.
%F A357844 a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/d(k)), where d(k) = A000005(k).
%t A357844 Denominator[Accumulate[Array[(-1)^(# + 1)/DivisorSigma[0, #] &, 60]]]
%o A357844 (PARI) lista(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / numdiv(k); print1(denominator(s), ", "))};
%o A357844 (Python)
%o A357844 from fractions import Fraction
%o A357844 from sympy import divisor_count
%o A357844 def A357844(n): return sum(Fraction(1 if k&1 else -1, divisor_count(k)) for k in range(1,n+1)).denominator # _Chai Wah Wu_, Oct 16 2022
%Y A357844 Cf. A000005, A307704, A357843 (numerators).
%Y A357844 Similar sequences: A104529, A211178, A357821.
%K A357844 nonn,frac
%O A357844 1,2
%A A357844 _Amiram Eldar_, Oct 16 2022