cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357845 Numerators of the partial alternating sums of the reciprocals of the sum of divisors function (A000203).

This page as a plain text file.
%I A357845 #13 Oct 17 2022 01:43:26
%S A357845 1,2,11,65,79,6,55,769,10837,30691,33421,32251,34591,16613,34591,
%T A357845 1039561,365327,356647,373573,365513,1504367,4400261,4569521,4501817,
%U A357845 149447,146327,149603,147263,151631,49937,25651,75913,38639,114097,232289,230129,4470731,4408487
%N A357845 Numerators of the partial alternating sums of the reciprocals of the sum of divisors function (A000203).
%H A357845 Olivier Bordellès and Benoit Cloitre, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Bordelles/bord14.html">An alternating sum involving the reciprocal of certain multiplicative functions</a>, Journal of Integer Sequences, Vol. 16 (2013), Article 13.6.3.
%H A357845 László Tóth, <a href="https://www.emis.de/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1.
%F A357845 a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/sigma(k)), where sigma(k) = A000203(k).
%F A357845 a(n)/A357846(n) ~ E * ((2/K-1)*(log(n) + gamma + F) + 2*log(2)*K'/K^2) + O(log(n)^(5/3)*log(log(n))^(4/3)/n), where E = Product_{p prime} alpha(p), F = Sum_{p prime} (p-1)^2*beta(p)*log(p)/(p*alpha(p)), alpha(p) = 1 - ((p-1)^2/p) * Sum_{k>=1} 1/((p^k-1)*(p^(k+1)-1)), beta(p) = Sum_{k>=1} k/((p^k-1)*(p^(k+1)-1)), K = A065442, K' = A065443 (Tóth, 2017).
%e A357845 Fractions begin with 1, 2/3, 11/12, 65/84, 79/84, 6/7, 55/56, 769/840, 10837/10920, 30691/32760, 33421/32760, 32251/32760, ...
%t A357845 Numerator[Accumulate[Array[(-1)^(# + 1)/DivisorSigma[1, #] &, 60]]]
%o A357845 (PARI) lista(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / sigma(k); print1(numerator(s), ", "))};
%o A357845 (Python)
%o A357845 from fractions import Fraction
%o A357845 from sympy import divisor_sigma
%o A357845 def A357845(n): return sum(Fraction(1 if k&1 else -1, divisor_sigma(k)) for k in range(1,n+1)).numerator # _Chai Wah Wu_, Oct 16 2022
%Y A357845 Cf. A000203, A065442, A065443, A068762, A357846 (denominators).
%Y A357845 Similar sequence: A104528, A212717, A357820.
%K A357845 nonn,frac
%O A357845 1,2
%A A357845 _Amiram Eldar_, Oct 16 2022