cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A357846 Denominators of the partial alternating sums of the reciprocals of the sum of divisors function (A000203).

Original entry on oeis.org

1, 3, 12, 84, 84, 7, 56, 840, 10920, 32760, 32760, 32760, 32760, 16380, 32760, 1015560, 338520, 338520, 338520, 338520, 1354080, 4062240, 4062240, 4062240, 131040, 131040, 131040, 131040, 131040, 43680, 21840, 65520, 32760, 98280, 196560, 196560, 3734640, 3734640
Offset: 1

Views

Author

Amiram Eldar, Oct 16 2022

Keywords

Comments

See A357845 for more details.

Crossrefs

Cf. A000203, A068762, A357845 (numerators).
Similar sequence: A104529, A212718, A357821.

Programs

  • Mathematica
    Denominator[Accumulate[Array[(-1)^(# + 1)/DivisorSigma[1, #] &, 60]]]
  • PARI
    lista(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / sigma(k); print1(denominator(s), ", "))};
    
  • Python
    from fractions import Fraction
    from sympy import divisor_sigma
    def A357846(n): return sum(Fraction(1 if k&1 else -1, divisor_sigma(k)) for k in range(1,n+1)).denominator # Chai Wah Wu, Oct 16 2022

Formula

a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/sigma(k)), where sigma(k) = A000203(k).
Showing 1-1 of 1 results.