A357848 Heinz numbers of integer partitions whose length is twice their alternating sum.
1, 6, 15, 35, 40, 77, 84, 90, 143, 189, 210, 220, 221, 224, 250, 323, 364, 437, 462, 490, 495, 504, 525, 528, 667, 748, 819, 858, 899, 988, 1029, 1040, 1134, 1147, 1155, 1188, 1210, 1320, 1326, 1375, 1400, 1408, 1517, 1564, 1683, 1690, 1763, 1904, 1938, 2021
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1: {} 6: {1,2} 15: {2,3} 35: {3,4} 40: {1,1,1,3} 77: {4,5} 84: {1,1,2,4} 90: {1,2,2,3} 143: {5,6} 189: {2,2,2,4} 210: {1,2,3,4} 220: {1,1,3,5} 221: {6,7} 224: {1,1,1,1,1,4}
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}]; Select[Range[1000],Length[primeMS[#]]==2sats[primeMS[#]]&]
Comments